Murakami Yasunori, Pasqualetti Massimo, Takio Yoko, Hirano Shigeki, Rijli Filippo M, Kuratani Shigeru
Evolutionary Morphology Research Team, Center for Developmental Biology, RIKEN, Kobe, Japan.
Development. 2004 Mar;131(5):983-95. doi: 10.1242/dev.00986.
During development, the vertebrate hindbrain is subdivided along its anteroposterior axis into a series of segmental bulges called rhombomeres. These segments in turn generate a repeated pattern of rhombomere-specific neurons, including reticular and branchiomotor neurons. In amphioxus (Cephalochordata), the sister group of the vertebrates, a bona fide segmented hindbrain is lacking, although the embryonic brain vesicle shows molecular anteroposterior regionalization. Therefore, evaluation of the segmental patterning of the central nervous system of agnathan embryos is relevant to our understanding of the origin of the developmental plan of the vertebrate hindbrain. To investigate the neuronal organization of the hindbrain of the Japanese lamprey, Lethenteron japonicum, we retrogradely labeled the reticulospinal and branchial motoneurons. By combining this analysis with a study of the expression patterns of genes identifying specific rhombomeric territories such as LjKrox20, LjPax6, LjEphC and LjHox3, we found that the reticular neurons in the lamprey hindbrain, including isthmic, bulbar and Mauthner cells, develop in conserved rhombomere-specific positions, similar to those in the zebrafish. By contrast, lamprey trigeminal and facial motor nuclei are not in register with rhombomere boundaries, unlike those of gnathostomes. The trigeminal-facial boundary corresponds to the rostral border of LjHox3 expression in the middle of rhombomere 4. Exogenous application of retinoic acid (RA) induced a rostral shift of both the LjHox3 expression domain and branchiomotor nuclei with no obvious repatterning of rhombomeric segmentation and reticular neurons. Therefore, whereas subtype variations of motoneuron identity along the anteroposterior axis may rely on Hox-dependent positional values, as in gnathostomes, such variations in the lamprey are not constrained by hindbrain segmentation. We hypothesize that the registering of hindbrain segmentation and neuronal patterning may have been acquired through successive and independent stepwise patterning changes during evolution.
在发育过程中,脊椎动物的后脑沿其前后轴被细分为一系列称为菱脑节的节段性隆起。这些节段进而产生菱脑节特异性神经元的重复模式,包括网状神经元和鳃运动神经元。在脊椎动物的姐妹类群文昌鱼(头索动物)中,虽然胚胎脑泡显示出分子前后区域化,但缺乏真正的分节后脑。因此,评估无颌类胚胎中枢神经系统的节段模式对于我们理解脊椎动物后脑发育计划的起源具有重要意义。为了研究日本七鳃鳗(Lethenteron japonicum)后脑的神经元组织,我们对网状脊髓神经元和鳃运动神经元进行了逆行标记。通过将这一分析与对识别特定菱脑节区域的基因(如LjKrox20、LjPax6、LjEphC和LjHox3)表达模式的研究相结合,我们发现七鳃鳗后脑中的网状神经元,包括峡部、延髓和莫特纳尔细胞,在保守的菱脑节特异性位置发育,类似于斑马鱼中的情况。相比之下,七鳃鳗的三叉神经和面运动核与菱脑节边界不一致,这与有颌类动物不同。三叉神经 - 面边界对应于菱脑节4中部LjHox3表达的前端边界。外源性视黄酸(RA)的应用导致LjHox3表达域和鳃运动核均向前移位,而菱脑节分割和网状神经元没有明显的重新模式化。因此,虽然沿前后轴运动神经元身份的亚型变化可能像在有颌类动物中一样依赖于Hox依赖的位置值,但七鳃鳗中的这种变化不受后脑分割的限制。我们推测,后脑分割和神经元模式的对齐可能是在进化过程中通过连续且独立的逐步模式变化获得的。