Trujillano Javier, March Jaume, Sorribas Albert
Grup de Recerca de Biomatemàtica i Bioestadística, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Spain.
Med Clin (Barc). 2004;122 Suppl 1:59-67. doi: 10.1157/13057536.
In clinical practice, there is an increasing interest in obtaining adequate models of prediction. Within the possible available alternatives, the artificial neural networks (ANN) are progressively more used. In this review we first introduce the ANN methodology, describing the most common type of ANN, the Multilayer Perceptron trained with backpropagation algorithm (MLP). Then we compare the MLP with the Logistic Regression (LR). Finally, we show a practical scheme to make an application based on ANN by means of an example with actual data. The main advantage of the RN is its capacity to incorporate nonlinear effects and interactions between the variables of the model without need to include them a priori. As greater disadvantages, they show a difficult interpretation of their parameters and large empiricism in their process of construction and training. ANN are useful for the computation of probabilities of a given outcome based on a set of predicting variables. Furthermore, in some cases, they obtain better results than LR. Both methodologies, ANN and LR, are complementary and they help us to obtain more valid models.
在临床实践中,人们对获得充分的预测模型越来越感兴趣。在可能的可用方法中,人工神经网络(ANN)的使用越来越多。在本综述中,我们首先介绍ANN方法,描述最常见的ANN类型,即使用反向传播算法训练的多层感知器(MLP)。然后我们将MLP与逻辑回归(LR)进行比较。最后,我们通过一个实际数据示例展示一个基于ANN进行应用的实用方案。ANN的主要优点是它能够纳入模型变量之间的非线性效应和相互作用,而无需事先将它们纳入。作为更大的缺点,它们表现出对其参数难以解释,并且在其构建和训练过程中存在很大的经验性。ANN对于基于一组预测变量计算给定结果的概率很有用。此外,在某些情况下,它们比LR获得更好的结果。ANN和LR这两种方法是互补的,它们帮助我们获得更有效的模型。