Suppr超能文献

药物代谢动力学(ADME)性质的计算机模拟预测:我们有进展吗?

In silico prediction of ADME properties: are we making progress?

作者信息

Beresford Alan P, Segall Matthew, Tarbit Michael H

机构信息

Inpharmatica Ltd, Pre-Clinical Research and Development, 127 Cambridge Science Park, Milton Road, Cambridge CB4 0GD, UK.

出版信息

Curr Opin Drug Discov Devel. 2004 Jan;7(1):36-42.

Abstract

The use of computational models in the prediction of ADME properties of compounds is growing rapidly in drug discovery as the benefits they provide in throughput and early application in drug design are realized. In addition, there is an increasing range of models available, as model builders have advanced from the first-generation' models, which were predominantly focused on solubility, absorption and metabolism, to include models of other optimization factors such as HERG, glucuronyl transferase and drug transport proteins. This widening interest is now driving demand for developments in the component elements of model building, namely higher quality datasets, better molecular descriptors and more computational power, and the quality of models is improving rapidly as a consequence. Models generally have very high throughput and can be used with virtual structures. As a consequence, they can generate large quantities of data on large numbers of compounds. Thus, one consequence of the wider choice of models, coupled with their high throughput, is a growing need to integrate their output into collective analyses of molecules against pre-set criteria. This article comments on some of the recent developments in ADME models, and highlights the importance of integrating the data to aid compound selection in drug discovery projects.

摘要

随着人们认识到计算模型在药物发现中预测化合物的吸收、分布、代谢和排泄(ADME)性质时所带来的高通量优势以及在药物设计早期应用中的益处,其在药物发现中的应用正在迅速增长。此外,可用模型的范围也在不断扩大,因为模型构建者已从主要关注溶解度、吸收和代谢的第一代模型,发展到包括其他优化因素的模型,如人醚 - 去极化相关基因(HERG)、葡萄糖醛酸转移酶和药物转运蛋白模型。这种日益增长的兴趣现在推动了对模型构建组成要素发展的需求,即更高质量的数据集、更好的分子描述符和更强的计算能力,结果模型质量正在迅速提高。模型通常具有非常高的通量,并且可以与虚拟结构一起使用。因此,它们可以生成大量关于大量化合物的数据。因此,模型选择范围更广及其高通量带来的一个结果是,越来越需要将其输出结果整合到针对预设标准的分子集体分析中。本文评论了ADME模型的一些最新进展,并强调了整合数据以辅助药物发现项目中化合物选择的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验