Suppr超能文献

通过体外和计算物理化学特征分析来提高化合物质量。

Improving compound quality through in vitro and in silico physicochemical profiling.

出版信息

Chem Biodivers. 2009 Nov;6(11):1760-6. doi: 10.1002/cbdv.200900056.

Abstract

Many compounds entering clinical studies do not survive the numerous hurdles for a good pharmacological lead to a drug on the market. The reasons for attrition have been widely studied which resulted in more early attention to compound quality related to physical chemistry, drug metabolism and pharmacokinetics (DMPK), and toxicology/safety. This paper will briefly review current physicochemical in vitro assays and in silico predictions to support compound and library design through to lead optimization. The most important physicochemical properties include lipophilicity (log P/D), pKa, solubility, and permeability. These drive key ADMET properties such as absorption, cell penetration, access to the brain, volume of distribution, plasma protein binding, metabolism, and toxicity, as well as biopharmaceutical behavior. Much data are now available from medium- to high-throughput physchem and ADMET in vitro assays, either in the public domain (see, e.g., PubChem, PubMed) or in drug companies' in-house databases. Such data are increasingly being computer-modelled and used in predictive chemistry. New pipelining technology makes it easier to build and update QSAR models so that such models can use the latest available data to produce robust local and global predictive in silico ADMET models.

摘要

许多进入临床研究的化合物无法通过大量的药理学研究,成为市场上的药物。人们广泛研究了淘汰的原因,这导致人们更早地关注与物理化学、药物代谢和药代动力学(DMPK)以及毒理学/安全性相关的化合物质量。本文将简要回顾当前的物理化学体外分析和计算预测,以支持化合物和文库设计,直至先导化合物优化。最重要的物理化学性质包括脂溶性(log P/D)、pKa、溶解度和渗透性。这些性质决定了关键的 ADMET 性质,如吸收、细胞穿透、进入大脑的能力、分布容积、血浆蛋白结合、代谢和毒性,以及生物制药行为。现在有大量来自中高通量物理化学和 ADMET 体外分析的数据,要么在公共领域(例如,参见 PubChem、PubMed),要么在制药公司的内部数据库中。这些数据越来越多地被计算机建模并用于预测化学。新的流水线技术使构建和更新 QSAR 模型变得更加容易,因此这些模型可以使用最新的可用数据来生成稳健的局部和全局预测性计算 ADMET 模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验