Laboratory for Chemometrics and Cheminformatics, Department of Chemistry, Università degli Studi di Perugia, via Elce di Sotto 10, I-06123, Perugia.
Chem Biodivers. 2009 Nov;6(11):1812-21. doi: 10.1002/cbdv.200900153.
Improving the ADME profile of drug candidates is a critical step in lead optimization, and because pKa affects most ADME properties such as lipophilicity, solubility, and metabolism, it is extremely advantageous to predict pKa in order to guide the design of new compounds. However, accurately (<0.5 log units) predicting pKa by empirical methods can be challenging especially for novel series, because of lack of knowledge on determinants of pKa (steric effects, ring effects, H-bonding, etc.), and because of limited experimental data on the effects of specific chemical groups on the ionization of an atom. To address these issues, we recently developed the computational package MoKa, which integrates graphical and command line tools designed for computational and medicinal chemists to predict the pKa values of organic compounds. Here, we present the major issues considered when we developed MoKa, such as the accurate selection of training data, the fundamentals of the methodology (which has also been extended to predict protein pKa), the treatment of multiprotic compounds, and the selection of the dominant tautomer for the calculation. Last, we illustrate some specific applications of MoKa to predict solubility, lipophilicity, and metabolism.
改善候选药物的 ADME 特征是优化先导化合物的关键步骤,由于 pKa 影响大多数 ADME 性质,如脂溶性、溶解度和代谢,因此预测 pKa 以指导新化合物的设计是非常有利的。然而,通过经验方法准确(<0.5 个对数单位)预测 pKa 可能具有挑战性,尤其是对于新型系列,因为缺乏对 pKa 决定因素(立体效应、环效应、氢键等)的了解,并且由于特定化学基团对原子电离影响的实验数据有限。为了解决这些问题,我们最近开发了计算包 MoKa,它集成了为计算化学家设计的图形和命令行工具和药物化学家来预测有机化合物的 pKa 值。在这里,我们介绍了在开发 MoKa 时考虑的主要问题,例如训练数据的准确选择、方法的基本原理(也已扩展到预测蛋白质 pKa)、多质子化合物的处理以及用于计算的优势互变异构体的选择。最后,我们举例说明了 MoKa 在预测溶解度、脂溶性和代谢方面的一些具体应用。