Ma Y, Marks L D
Materials Research Center, Northwestern University, Evanston, Illinois 60208.
Microsc Res Tech. 1992 Feb 15;20(4):371-89. doi: 10.1002/jemt.1070200408.
High energy electron reflection (HEER) is an important technique in surface science and uses the information carried by high energy electrons reflected from surfaces to study surface structures and surface electronic states. With the development of reflection high energy electron diffraction (RHEED), high energy electron microscopy (REM), and high energy electron energy loss spectroscopy (EEL) in surface science, the usefulness of HEER has been widely recognized and demonstrated. However, a stationary dynamical solution for an arbitrary surface for HEER has not been obtained yet. In this paper, some developments in understanding the dynamical theory of HEER, particularly in recent years, are reviewed: 1. The introduction of the concept of current flow for a semi-infinite crystal model has removed the confusion around the wave points in the "band gap." 2. The consistency between the Bloch wave and multislice in the Bragg case has verified the validity of the argument of current flow and led to the emergence of the BMCR method (Bloch wave + Multislice Combined for Reflection). 3. The failure of the Bloch Wave-Only solution (the BWO solution) on Au (110) surfaces in the Bragg case revealed by the BMCR method implies that previous BWO calculations in the Bragg case might be at fault. 4. The 2-D dependence of the electron wave fields and Picard iteration-like character of multislice calculation in the Bragg case has led to the emergence of an Edge Patching method in Multislice-mode-Only (the EPMO method). The new method yields an infinitely convergent stationary dynamical solution for an arbitrary surface.
高能电子反射(HEER)是表面科学中的一项重要技术,它利用从表面反射的高能电子所携带的信息来研究表面结构和表面电子态。随着表面科学中反射高能电子衍射(RHEED)、高能电子显微镜(REM)和高能电子能量损失谱(EEL)的发展,HEER的实用性已得到广泛认可和证明。然而,尚未获得针对任意表面的HEER的稳态动力学解。本文综述了在理解HEER动力学理论方面的一些进展,特别是近年来的进展:1. 半无限晶体模型电流流动概念的引入消除了围绕“带隙”中波点的困惑。2. 布拉格情形下布洛赫波与多层法的一致性验证了电流流动论点的有效性,并导致了BMCR方法(用于反射的布洛赫波+多层组合法)的出现。3. BMCR方法揭示的布拉格情形下仅布洛赫波解(BWO解)在Au(110)表面上的失效意味着先前在布拉格情形下的BWO计算可能有误。4. 布拉格情形下电子波场的二维依赖性和多层计算的类皮卡迭代特性导致了仅多层模式下的边缘修补方法(EPMO方法)的出现。该新方法为任意表面产生了无限收敛的稳态动力学解。