Suppr超能文献

枯草芽孢杆菌热休克刺激因子

The Bacillus subtilis heat shock stimulon.

作者信息

Schumann Wolfgang

机构信息

Institute of Genetics, University of Bayreuth, D-95440 Bayreuth, Germany.

出版信息

Cell Stress Chaperones. 2003 Fall;8(3):207-17. doi: 10.1379/1466-1268(2003)008<0207:tbshss>2.0.co;2.

Abstract

All organisms respond to a sudden increase in temperature by the so-called heat shock response. This response results in the induction of a subset of genes, designated heat shock genes coding for heat shock proteins, which allow the cell to cope with the stress regimen. Research carried out during the last 10 years with eubacteria has revealed that the heat shock genes of a given species fall into different classes (regulons), where each class is regulated by a different transcriptional regulator, which could be an alternative sigma factor, a transcriptional activator, or a transcriptional repressor. All regulons of a single species constitute the heat shock stimulon. In Bacillus subtilis, more than 200 genes representing over 7% of the transcriptionally active genes are induced at least 3-fold in response to a heat shock. This response becomes apparent within the first minute after exposure to heat stress, is transient, and is coordinated by at least 5 transcriptional regulator proteins, including 2 repressors, an alternate sigma-factor, and a 2-component signal transduction system. A detailed analysis of the regulation of all known heat shock genes has shown that they belong to at least 6 regulons that together comprise the B. subtilis heat shock stimulon. Potential thermosensors are discussed in this article.

摘要

所有生物体都会通过所谓的热休克反应来应对温度的突然升高。这种反应会导致一组特定基因的诱导表达,这些基因被称为热休克基因,编码热休克蛋白,使细胞能够应对压力状态。在过去10年中对真细菌进行的研究表明,特定物种的热休克基因可分为不同的类别(调控子),其中每个类别由不同的转录调节因子调控,该调节因子可以是替代西格玛因子、转录激活因子或转录抑制因子。单个物种的所有调控子构成热休克刺激子。在枯草芽孢杆菌中,超过200个基因(占转录活性基因的7%以上)在热休克反应中至少被诱导3倍。这种反应在暴露于热应激后的第一分钟内就会显现出来,是短暂的,并且由至少5种转录调节蛋白协调,包括2种抑制因子、1种替代西格玛因子和1个双组分信号转导系统。对所有已知热休克基因调控的详细分析表明,它们至少属于6个调控子,这些调控子共同构成了枯草芽孢杆菌热休克刺激子。本文讨论了潜在的热传感器。

相似文献

1
The Bacillus subtilis heat shock stimulon.
Cell Stress Chaperones. 2003 Fall;8(3):207-17. doi: 10.1379/1466-1268(2003)008<0207:tbshss>2.0.co;2.
3
Global transcriptional response of Bacillus subtilis to heat shock.
J Bacteriol. 2001 Dec;183(24):7318-28. doi: 10.1128/JB.183.24.7318-7328.2001.
4
CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis.
J Bacteriol. 1994 Mar;176(5):1359-63. doi: 10.1128/jb.176.5.1359-1363.1994.
5
Heat-shock and general stress response in Bacillus subtilis.
Mol Microbiol. 1996 Feb;19(3):417-28. doi: 10.1046/j.1365-2958.1996.396932.x.
6
The sigma B-dependent promoter of the Bacillus subtilis sigB operon is induced by heat shock.
J Bacteriol. 1993 Apr;175(7):1929-35. doi: 10.1128/jb.175.7.1929-1935.1993.
8
Identification and transcriptional analysis of new members of the sigmaB regulon in Bacillus subtilis.
Microbiology (Reading). 1999 Apr;145 ( Pt 4):869-880. doi: 10.1099/13500872-145-4-869.
9
Regulation of bacterial heat shock stimulons.
Cell Stress Chaperones. 2016 Nov;21(6):959-968. doi: 10.1007/s12192-016-0727-z. Epub 2016 Aug 12.
10
Regulatory role of RsgI in sigI expression in Bacillus subtilis.
Microbiology (Reading). 2007 Jan;153(Pt 1):92-101. doi: 10.1099/mic.0.29239-0.

引用本文的文献

1
Genome-wide transcription response of to heat shock and medically relevant glucose levels.
Front Microbiol. 2024 Jul 22;15:1408796. doi: 10.3389/fmicb.2024.1408796. eCollection 2024.
2
Characterization of heat, salt, acid, alkaline, and antibiotic stress response in soil isolate Bacillus subtilis strain PSK.A2.
Int Microbiol. 2025 Feb;28(2):315-332. doi: 10.1007/s10123-024-00549-z. Epub 2024 Jun 19.
3
Gene cloning and characterization of a novel recombinant 40-kDa heat shock protein from Mesobacillus persicus B48.
World J Microbiol Biotechnol. 2023 Jul 12;39(9):248. doi: 10.1007/s11274-023-03693-2.
4
Quantification of Motility in at Temperatures Up to 84°C Using a Submersible Volumetric Microscope and Automated Tracking.
Front Microbiol. 2022 Apr 21;13:836808. doi: 10.3389/fmicb.2022.836808. eCollection 2022.
6
Update on the Protein Homeostasis Network in .
Front Microbiol. 2022 Mar 8;13:865141. doi: 10.3389/fmicb.2022.865141. eCollection 2022.
7
8
Proteomic Responses to Butanol Stress.
Front Microbiol. 2021 Jul 21;12:674639. doi: 10.3389/fmicb.2021.674639. eCollection 2021.

本文引用的文献

1
Regulation of the Bacillus subtilis heat shock gene htpG is under positive control.
J Bacteriol. 2003 Jan;185(2):466-74. doi: 10.1128/JB.185.2.466-474.2003.
3
Isolation and analysis of mutant alleles of the Bacillus subtilis HrcA repressor with reduced dependency on GroE function.
J Biol Chem. 2002 Sep 6;277(36):32659-67. doi: 10.1074/jbc.M201372200. Epub 2002 Jun 24.
4
A mRNA-based thermosensor controls expression of rhizobial heat shock genes.
Nucleic Acids Res. 2001 Dec 1;29(23):4800-7. doi: 10.1093/nar/29.23.4800.
5
Global transcriptional response of Bacillus subtilis to heat shock.
J Bacteriol. 2001 Dec;183(24):7318-28. doi: 10.1128/JB.183.24.7318-7328.2001.
6
Negative regulation of the heat shock response in Streptomyces.
Arch Microbiol. 2001 Oct;176(4):237-42. doi: 10.1007/s002030100321.
8
A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress.
Mol Microbiol. 2001 Sep;41(5):1159-72. doi: 10.1046/j.1365-2958.2001.02576.x.
9
Genome-wide analysis of the general stress response in Bacillus subtilis.
Mol Microbiol. 2001 Aug;41(4):757-74. doi: 10.1046/j.1365-2958.2001.02534.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验