Suppr超能文献

DNA微阵列与染色体分选技术的联合应用。

Applications of combined DNA microarray and chromosome sorting technologies.

作者信息

Gribble S M, Fiegler H, Burford D C, Prigmore E, Yang F, Carr P, Ng B L, Sun T, Kamberov E S, Makarov V L, Langmore J P, Carter N P

机构信息

The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.

出版信息

Chromosome Res. 2004;12(1):35-43. doi: 10.1023/b:chro.0000009325.69828.83.

Abstract

The sequencing of the human genome has led to the availability of an extensive mapped clone resource that is ideal for the construction of DNA microarrays. These genomic clone microarrays have largely been used for comparative genomic hybridisation studies of tumours to enable accurate measurement of copy number changes (array-CGH) at increased resolution. We have utilised these microarrays as the target for chromosome painting and reverse chromosome painting to provide a similar improvement in analysis resolution for these studies in a process we have termed array painting. In array painting, chromosomes are flow sorted, fluorescently labelled and hybridised to the microarray. The complete composition and the breakpoints of aberrant chromosomes can be analysed at high resolution in this way with a considerable reduction in time, effort and cytogenetic expertise required for conventional analysis using fluorescence in situ hybridisation. In a similar way, the resolution of cross-species chromosome painting can be improved and we present preliminary observations of the organisation of homologous DNA blocks between the white cheeked gibbon chromosome 14 and human chromosomes 2 and 17.

摘要

人类基因组测序催生了丰富的定位克隆资源,这为构建DNA微阵列提供了理想材料。这些基因组克隆微阵列主要用于肿瘤的比较基因组杂交研究,以便在更高分辨率下精确测量拷贝数变化(阵列比较基因组杂交,array-CGH)。我们利用这些微阵列作为染色体涂染和反向染色体涂染的靶标,在一个我们称为阵列涂染的过程中,为这些研究提供类似的分析分辨率提升。在阵列涂染中,对染色体进行流式分选、荧光标记并与微阵列杂交。通过这种方式,可以高分辨率分析异常染色体的完整组成和断点,与使用荧光原位杂交的传统分析相比,所需的时间大幅减少,工作量降低,对细胞遗传学专业知识的要求也降低。同样,跨物种染色体涂染的分辨率也可以提高,我们展示了白颊长臂猿14号染色体与人类2号和17号染色体之间同源DNA片段组织的初步观察结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验