Suppr超能文献

一种基于知识的用于分析和预测跨膜结构域蛋白埋藏和暴露面的量表。

A knowledge-based scale for the analysis and prediction of buried and exposed faces of transmembrane domain proteins.

作者信息

Beuming Thijs, Weinstein Harel

机构信息

Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, NY 10029, USA.

出版信息

Bioinformatics. 2004 Aug 12;20(12):1822-35. doi: 10.1093/bioinformatics/bth143. Epub 2004 Feb 26.

Abstract

MOTIVATION

The dearth of structural data on alpha-helical membrane proteins (MPs) has hampered thus far the development of reliable knowledge-based potentials that can be used for automatic prediction of transmembrane (TM) protein structure. While algorithms for identifying TM segments are available, modeling of the TM domains of alpha-helical MPs involves assembling the segments into a bundle. This requires the correct assignment of the buried and lipid-exposed faces of the TM domains.

RESULTS

A recent increase in the number of crystal structures of alpha-helical MPs has enabled an analysis of the lipid-exposed surfaces and the interiors of such molecules on the basis of structure, rather than sequence alone. Together with a conservation criterion that is based on previous observations that conserved residues are mostly found in the interior of MPs, the bias of certain residue types to be preferably buried or exposed is proposed as a criterion for predicting the lipid-exposed and interior faces of TMs. Applications to known structures demonstrates 80% accuracy of this prediction algorithm.

AVAILABILITY

The algorithm used for the predictions is implemented in the ProperTM Web server (http://icb.med.cornell.edu/services/propertm/start).

摘要

动机

迄今为止,α-螺旋膜蛋白(MPs)结构数据的匮乏阻碍了可靠的基于知识的势函数的开发,而这种势函数可用于自动预测跨膜(TM)蛋白结构。虽然已有识别TM片段的算法,但α-螺旋MPs的TM结构域建模涉及将这些片段组装成束。这需要正确确定TM结构域的埋藏面和脂质暴露面。

结果

最近α-螺旋MPs晶体结构数量的增加,使得能够基于结构而非仅基于序列来分析此类分子的脂质暴露表面和内部。结合基于先前观察结果(即保守残基大多位于MPs内部)的保守性标准,提出某些残基类型倾向于被埋藏或暴露的偏向性作为预测TMs脂质暴露面和内部面的标准。对已知结构的应用表明该预测算法的准确率为80%。

可用性

用于预测的算法在ProperTM网络服务器(http://icb.med.cornell.edu/services/propertm/start)中实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验