Suppr超能文献

螺旋膜蛋白跨膜残基埋藏状态的预测。

Prediction of the burial status of transmembrane residues of helical membrane proteins.

作者信息

Park Yungki, Hayat Sikander, Helms Volkhard

机构信息

Center for Bioinformatics, Saarland University, 66041 Saarbruecken, Germany.

出版信息

BMC Bioinformatics. 2007 Aug 20;8:302. doi: 10.1186/1471-2105-8-302.

Abstract

BACKGROUND

Helical membrane proteins (HMPs) play a crucial role in diverse cellular processes, yet it still remains extremely difficult to determine their structures by experimental techniques. Given this situation, it is highly desirable to develop sequence-based computational methods for predicting structural characteristics of HMPs.

RESULTS

We have developed TMX (TransMembrane eXposure), a novel method for predicting the burial status (i.e. buried in the protein structure vs. exposed to the membrane) of transmembrane (TM) residues of HMPs. TMX derives positional scores of TM residues based on their profiles and conservation indices. Then, a support vector classifier is used for predicting their burial status. Its prediction accuracy is 78.71% on a benchmark data set, representing considerable improvements over 68.67% and 71.06% of previously proposed methods. Importantly, unlike the previous methods, TMX automatically yields confidence scores for the predictions made. In addition, a feature selection incorporated in TMX reveals interesting insights into the structural organization of HMPs.

CONCLUSION

A novel computational method, TMX, has been developed for predicting the burial status of TM residues of HMPs. Its prediction accuracy is much higher than that of previously proposed methods. It will be useful in elucidating structural characteristics of HMPs as an inexpensive, auxiliary tool. A web server for TMX is established at http://service.bioinformatik.uni-saarland.de/tmx and freely available to academic users, along with the data set used.

摘要

背景

螺旋膜蛋白(HMPs)在多种细胞过程中发挥着关键作用,但通过实验技术确定其结构仍然极其困难。鉴于这种情况,非常需要开发基于序列的计算方法来预测HMPs的结构特征。

结果

我们开发了TMX(跨膜暴露),这是一种预测HMPs跨膜(TM)残基埋藏状态(即埋藏在蛋白质结构中与暴露于膜中)的新方法。TMX根据TM残基的概况和保守指数得出其位置得分。然后,使用支持向量分类器预测其埋藏状态。在一个基准数据集上,其预测准确率为78.71%,相比之前提出的方法的68.67%和71.06%有了显著提高。重要的是,与之前的方法不同,TMX会自动为所做的预测生成置信度得分。此外,TMX中纳入的特征选择揭示了关于HMPs结构组织的有趣见解。

结论

已开发出一种新的计算方法TMX,用于预测HMPs的TM残基的埋藏状态。其预测准确率远高于之前提出的方法。作为一种廉价的辅助工具,它将有助于阐明HMPs的结构特征。TMX的网络服务器已在http://service.bioinformatik.uni-saarland.de/tmx建立,可供学术用户免费使用,同时还提供了所使用的数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af71/2000914/8b62336d2f7b/1471-2105-8-302-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验