Suppr超能文献

基于核的数据融合及其在酵母蛋白质功能预测中的应用。

Kernel-based data fusion and its application to protein function prediction in yeast.

作者信息

Lanckriet G R G, Deng M, Cristianini N, Jordan M I, Noble W S

机构信息

Division of Electrical Engineering, University of California, Berkeley, USA.

出版信息

Pac Symp Biocomput. 2004:300-11. doi: 10.1142/9789812704856_0029.

Abstract

Kernel methods provide a principled framework in which to represent many types of data, including vectors, strings, trees and graphs. As such, these methods are useful for drawing inferences about biological phenomena. We describe a method for combining multiple kernel representations in an optimal fashion, by formulating the problem as a convex optimization problem that can be solved using semidefinite programming techniques. The method is applied to the problem of predicting yeast protein functional classifications using a support vector machine (SVM) trained on five types of data. For this problem, the new method performs better than a previously-described Markov random field method, and better than the SVM trained on any single type of data.

摘要

核方法提供了一个有原则的框架,可用于表示多种类型的数据,包括向量、字符串、树和图。因此,这些方法对于推导生物学现象很有用。我们描述了一种以最优方式组合多个核表示的方法,即将该问题表述为一个可使用半定规划技术求解的凸优化问题。该方法应用于利用在五种类型数据上训练的支持向量机(SVM)预测酵母蛋白质功能分类的问题。对于这个问题,新方法比先前描述的马尔可夫随机场方法表现更好,并且比在任何单一类型数据上训练的支持向量机表现更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验