Suppr超能文献

从功能磁共振成像数据的独立成分分析生成组统计推断的三种方法的比较。

Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data.

作者信息

Schmithorst Vincent J, Holland Scott K

机构信息

Imaging Research Center, Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.

出版信息

J Magn Reson Imaging. 2004 Mar;19(3):365-8. doi: 10.1002/jmri.20009.

Abstract

PURPOSE

To evaluate the relative effectiveness of three previously proposed methods of performing group independent component analysis (ICA) of functional magnetic resonance imaging (fMRI) data.

MATERIALS AND METHODS

Data were generated via computer simulation. Components were added to a varying number of subjects between 1 and 20, and intersubject variability was simulated for both the added sources and their associated time courses. Three methods of group ICA analyses were performed: across-subject averaging, subject-wise concatenation, and row-wise concatenation (e.g., across time courses).

RESULTS

Concatenating across subjects provided the best overall performance in terms of accurate estimation of the sources and associated time courses. Averaging across subjects provided accurate estimation (R > 0.9) of the time courses when the sources were present in a sufficient fraction (about 15%) of 100 subjects. Concatenating across time courses was shown not to be a feasible method when unique sources were added to the data from each subject, simulating the effects of motion and susceptibility artifacts.

CONCLUSION

Subject-wise concatenation should be used when computationally feasible. For studies involving a large number of subjects, across-subject averaging provides an acceptable alternative and reduces the computational load.

摘要

目的

评估先前提出的三种对功能磁共振成像(fMRI)数据进行组独立成分分析(ICA)方法的相对有效性。

材料与方法

数据通过计算机模拟生成。在1至20名不同数量的受试者中添加成分,并对添加的源及其相关时间历程模拟受试者间变异性。进行了三种组ICA分析方法:跨受试者平均、逐个受试者串联和逐行串联(例如,跨时间历程)。

结果

就源及其相关时间历程的准确估计而言,逐个受试者串联提供了最佳的总体性能。当源在100名受试者的足够比例(约15%)中存在时,跨受试者平均对时间历程提供了准确估计(R>0.9)。当从每个受试者的数据中添加独特源以模拟运动和磁化率伪影的影响时,逐行串联被证明不是一种可行的方法。

结论

在计算可行时应使用逐个受试者串联。对于涉及大量受试者的研究,跨受试者平均提供了可接受的替代方法并降低了计算负荷。

相似文献

3
A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies.
Biometrics. 2013 Dec;69(4):970-81. doi: 10.1111/biom.12068. Epub 2013 Aug 22.
5
Subject order-independent group ICA (SOI-GICA) for functional MRI data analysis.
Neuroimage. 2010 Jul 15;51(4):1414-24. doi: 10.1016/j.neuroimage.2010.03.039. Epub 2010 Mar 23.
6
Model-free fMRI group analysis using FENICA.
Neuroimage. 2011 Mar 1;55(1):185-93. doi: 10.1016/j.neuroimage.2010.11.010. Epub 2010 Nov 13.
7
Independent vector analysis (IVA): multivariate approach for fMRI group study.
Neuroimage. 2008 Mar 1;40(1):86-109. doi: 10.1016/j.neuroimage.2007.11.019. Epub 2007 Nov 28.
8
Dissecting cognitive stages with time-resolved fMRI data: a comparison of fuzzy clustering and independent component analysis.
Magn Reson Imaging. 2007 Jul;25(6):860-8. doi: 10.1016/j.mri.2007.02.018. Epub 2007 May 4.
9
Independent component analysis of fMRI group studies by self-organizing clustering.
Neuroimage. 2005 Mar;25(1):193-205. doi: 10.1016/j.neuroimage.2004.10.042. Epub 2005 Jan 8.
10
Nonstationary noise estimation in functional MRI.
Neuroimage. 2005 Dec;28(4):890-903. doi: 10.1016/j.neuroimage.2005.06.043. Epub 2005 Aug 29.

引用本文的文献

1
Altered functional connectivity within and between resting-state networks in ulcerative colitis.
Brain Imaging Behav. 2025 Apr 2. doi: 10.1007/s11682-025-01001-0.
2
Self-Regulation of Attention in Children in a Virtual Classroom Environment: A Feasibility Study.
Bioengineering (Basel). 2023 Nov 24;10(12):1352. doi: 10.3390/bioengineering10121352.
4
Aberrant brain connectivity is associated with childhood maltreatment in individuals with major depressive disorder.
Brain Imaging Behav. 2022 Oct;16(5):2021-2036. doi: 10.1007/s11682-022-00672-3. Epub 2022 Jul 29.
8
Brain Connectivity Studies on Structure-Function Relationships: A Short Survey with an Emphasis on Machine Learning.
Comput Intell Neurosci. 2021 May 27;2021:5573740. doi: 10.1155/2021/5573740. eCollection 2021.
9
Robust brain network identification from multi-subject asynchronous fMRI data.
Neuroimage. 2021 Feb 15;227:117615. doi: 10.1016/j.neuroimage.2020.117615. Epub 2020 Dec 8.
10
Modeling task-based fMRI data via deep belief network with neural architecture search.
Comput Med Imaging Graph. 2020 Jul;83:101747. doi: 10.1016/j.compmedimag.2020.101747. Epub 2020 Jun 6.

本文引用的文献

1
Fast and robust fixed-point algorithms for independent component analysis.
IEEE Trans Neural Netw. 1999;10(3):626-34. doi: 10.1109/72.761722.
3
ICA of fMRI group study data.
Neuroimage. 2002 Jul;16(3 Pt 1):551-63. doi: 10.1006/nimg.2002.1122.
6
Analysis of fMRI data by blind separation into independent spatial components.
Hum Brain Mapp. 1998;6(3):160-88. doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1.
7
An information-maximization approach to blind separation and blind deconvolution.
Neural Comput. 1995 Nov;7(6):1129-59. doi: 10.1162/neco.1995.7.6.1129.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验