Calhoun V D, Adali T, Pekar J J, Pearlson G D
Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA.
Neuroimage. 2003 Nov;20(3):1661-9. doi: 10.1016/s1053-8119(03)00411-7.
Independent component analysis (ICA), a data-driven approach utilizing high-order statistical moments to find maximally independent sources, has found fruitful application in functional magnetic resonance imaging (fMRI). A limitation of the standard fMRI ICA model is that a given component's time course is required to have the same delay at every voxel. As spatially varying delays (SVDs) may be found in fMRI data, using an ICA model with a fixed temporal delay for each source will have two implications. Larger SVDs can result in the splitting of regions with different delays into different components. Second, smaller SVDs can result in a biased ICA amplitude estimate due to only a slight delay difference. We propose a straightforward approach for incorporating this prior temporal information and removing the limitation of a fixed source delay by performing ICA on the amplitude spectrum of the original fMRI data (thus removing latency information). A latency map is then estimated for each component using the resulting component images and the raw data. We show that voxels with similar time courses, but different delays, are grouped into the same component. Additionally, when using traditional ICA, the amplitudes of motor areas are diminished due to systematic delay differences between visual and motor areas. The amplitudes are more accurately estimated when using a latency-insensitive ICA approach. The resulting time courses, the component maps, and the latency maps may prove useful as an addition to the collection of methods for fMRI data analysis.
独立成分分析(ICA)是一种利用高阶统计矩来寻找最大程度独立源的数据驱动方法,已在功能磁共振成像(fMRI)中得到了广泛应用。标准fMRI ICA模型的一个局限性在于,要求给定成分的时间历程在每个体素处具有相同的延迟。由于在fMRI数据中可能会发现空间变化延迟(SVD),因此对每个源使用具有固定时间延迟的ICA模型会产生两个影响。较大的SVD可能导致具有不同延迟的区域被分割成不同的成分。其次,较小的SVD可能由于仅存在轻微的延迟差异而导致ICA幅度估计有偏差。我们提出了一种直接的方法,通过对原始fMRI数据的幅度谱执行ICA(从而去除延迟信息)来纳入这种先验时间信息并消除固定源延迟的限制。然后使用所得的成分图像和原始数据为每个成分估计一个延迟图。我们表明,具有相似时间历程但延迟不同的体素被分组到同一个成分中。此外,使用传统ICA时,由于视觉和运动区域之间存在系统的延迟差异,运动区域的幅度会减小。使用对延迟不敏感的ICA方法时,幅度估计会更准确。所得的时间历程、成分图和延迟图可能被证明是对fMRI数据分析方法集的一种补充,具有一定的用途。