Suppr超能文献

从多主体异步 fMRI 数据中识别稳健的大脑网络。

Robust brain network identification from multi-subject asynchronous fMRI data.

机构信息

Signal and Image Processing Institute, University of Southern California, Los Angeles, CA 90089, United States.

Radiology and Pediatrics, Division of Neonatology, Children's Hospital Los Angeles, Los Angeles, CA 90027, United States; Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States.

出版信息

Neuroimage. 2021 Feb 15;227:117615. doi: 10.1016/j.neuroimage.2020.117615. Epub 2020 Dec 8.

Abstract

We describe a novel method for robust identification of common brain networks and their corresponding temporal dynamics across subjects from asynchronous functional MRI (fMRI) using tensor decomposition. We first temporally align asynchronous fMRI data using the orthogonal BrainSync transform, allowing us to study common brain networks across sessions and subjects. We then map the synchronized fMRI data into a 3D tensor (vertices × time × subject/session). Finally, we apply Nesterov-accelerated adaptive moment estimation (Nadam) within a scalable and robust sequential Canonical Polyadic (CP) decomposition framework to identify a low rank tensor approximation to the data. As a result of CP tensor decomposition, we successfully identified twelve known brain networks with their corresponding temporal dynamics from 40 subjects using the Human Connectome Project's language task fMRI data without any prior information regarding the specific task designs. Seven of these networks show distinct subjects' responses to the language task with differing temporal dynamics; two show sub-components of the default mode network that exhibit deactivation during the tasks; the remaining three components reflect non-task-related activities. We compare results to those found using group independent component analysis (ICA) and canonical ICA. Bootstrap analysis demonstrates increased robustness of networks found using the CP tensor approach relative to ICA-based methods.

摘要

我们描述了一种新颖的方法,用于使用张量分解从异步功能磁共振成像 (fMRI) 中稳健地识别常见的大脑网络及其在受试者中的对应时间动态。我们首先使用正交的 BrainSync 变换对异步 fMRI 数据进行时间对齐,从而可以研究跨会话和受试者的常见大脑网络。然后,我们将同步 fMRI 数据映射到 3D 张量(顶点×时间×受试者/会话)。最后,我们在可扩展且稳健的顺序规范 Polyadic (CP) 分解框架内应用 Nesterov 加速自适应矩估计 (Nadam),以识别数据的低阶张量逼近。由于 CP 张量分解,我们成功地从 40 个受试者的人类连接组计划语言任务 fMRI 数据中识别出了十二个已知的大脑网络及其对应时间动态,而无需有关特定任务设计的任何先验信息。这 12 个网络中的 7 个显示了受试者对语言任务的不同反应,具有不同的时间动态;2 个显示了默认模式网络的子组件,这些子组件在任务期间表现出去激活;其余 3 个组件反映了非任务相关的活动。我们将结果与使用组独立成分分析 (ICA) 和规范 ICA 得到的结果进行比较。引导分析表明,与基于 ICA 的方法相比,使用 CP 张量方法发现的网络具有更高的稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2166/7983296/4e37db92c15a/nihms-1675904-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验