Liu Xiuli, Godwin Malinda L, Nowak Grazyna
Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
Am J Physiol Renal Physiol. 2004 Jul;287(1):F64-73. doi: 10.1152/ajprenal.00216.2003. Epub 2004 Mar 2.
Previously, we showed that physiological functions of renal proximal tubular cells (RPTC) do not recover following S-(1,2-dichlorovinyl)-l-cysteine (DCVC)-induced injury. This study investigated the role of protein kinase C-alpha (PKC-alpha) in the lack of repair of mitochondrial function in DCVC-injured RPTC. After DCVC exposure, basal oxygen consumption (Qo(2)), uncoupled Qo(2), oligomycin-sensitive Qo(2), F(1)F(0)-ATPase activity, and ATP production decreased, respectively, to 59, 27, 27, 57, and 68% of controls. None of these functions recovered. Mitochondrial transmembrane potential decreased 53% after DCVC injury but recovered on day 4. PKC-alpha was activated 4.3- and 2.5-fold on days 2 and 4, respectively, of the recovery period. Inhibition of PKC-alpha activation (10 nM Go6976) did not block DCVC-induced decreases in mitochondrial functions but promoted the recovery of uncoupled Qo(2), oligomycin-sensitive Qo(2), F(1)F(0)-ATPase activity, and ATP production. Protein levels of the catalytic beta-subunit of F(1)F(0)-ATPase were not changed by DCVC or during the recovery period. Amino acid sequence analysis revealed that alpha-, beta-, and epsilon-subunits of F(1)F(0)-ATPase have PKC consensus motifs. Recombinant PKC-alpha phosphorylated the beta-subunit and decreased F(1)F(0)-ATPase activity in vitro. Serine but not threonine phosphorylation of the beta-subunit was increased during late recovery following DCVC injury, and inhibition of PKC-alpha activation decreased this phosphorylation. We conclude that during RPTC recovery following DCVC injury, 1). PKC-alpha activation decreases F(0)F(1)-ATPase activity, oxidative phosphorylation, and ATP production; 2). PKC-alpha phosphorylates the beta-subunit of F(1)F(0)-ATPase on serine residue; and 3). PKC-alpha does not mediate depolarization of RPTC mitochondria. This is the first report showing that PKC-alpha phosphorylates the catalytic subunit of F(1)F(0)-ATPase and that PKC-alpha plays an important role in regulating repair of mitochondrial function.
此前,我们发现肾近端小管细胞(RPTC)在受到S-(1,2-二氯乙烯基)-L-半胱氨酸(DCVC)诱导的损伤后,其生理功能无法恢复。本研究调查了蛋白激酶C-α(PKC-α)在DCVC损伤的RPTC线粒体功能修复缺失中的作用。DCVC暴露后,基础氧消耗(Qo₂)、解偶联Qo₂、寡霉素敏感Qo₂、F₁F₀-ATP酶活性和ATP生成分别降至对照值的59%、27%、27%、57%和68%。这些功能均未恢复。DCVC损伤后线粒体跨膜电位下降53%,但在第4天恢复。在恢复期的第2天和第4天,PKC-α分别被激活4.3倍和2.5倍。抑制PKC-α激活(10 nM Go6976)并未阻止DCVC诱导的线粒体功能下降,但促进了解偶联Qo₂、寡霉素敏感Qo₂、F₁F₀-ATP酶活性和ATP生成的恢复。F₁F₀-ATP酶催化β亚基的蛋白水平在DCVC处理后或恢复期未发生变化。氨基酸序列分析显示,F₁F₀-ATP酶的α、β和ε亚基具有PKC共有基序。重组PKC-α在体外使β亚基磷酸化并降低F₁F₀-ATP酶活性。DCVC损伤后恢复期晚期,β亚基的丝氨酸而非苏氨酸磷酸化增加,抑制PKC-α激活可减少这种磷酸化。我们得出结论,在DCVC损伤后的RPTC恢复过程中,1). PKC-α激活降低F₀F₁-ATP酶活性、氧化磷酸化和ATP生成;2). PKC-α使F₁F₀-ATP酶的β亚基在丝氨酸残基上磷酸化;3). PKC-α不介导RPTC线粒体的去极化。这是首次报道PKC-α使F₁F₀-ATP酶催化亚基磷酸化,且PKC-α在调节线粒体功能修复中起重要作用。