Sommer Frederik, Drepper Friedel, Haehnel Wolfgang, Hippler Michael
Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburgerstrasse 159, 07743 Jena, Germany.
J Biol Chem. 2004 May 7;279(19):20009-17. doi: 10.1074/jbc.M313986200. Epub 2004 Mar 2.
On the lumenal side of photosystem I (PSI), each of the two large core subunits, PsaA and PsaB, expose a conserved tryptophan residue to the surface. PsaB-Trp(627) is part of the hydrophobic recognition site that is essential for tight binding of the two electron donors plastocyanin and cytochrome c(6) to the donor side of PSI (Sommer, F., Drepper, F., and Hippler, M. (2002) J. Biol. Chem. 277, 6573-6581). To examine the function of PsaA-Trp(651) in binding and electron transfer of both donors to PSI, we generated the mutants PsaA-W651F and PsaA-W651S by site-directed mutagenesis and biolistic transformation of Chlamydomonas reinhardtii. The protein-protein interaction and the electron transfer between the donors and PSI isolated from the mutants were analyzed by flash absorption spectroscopy. The mutation PsaA-W651F completely abolished the formation of a first order electron transfer complex between plastocyanin (pc) and the altered PSI and increased the dissociation constant for binding of cytochrome (cyt) c(6) by more than a factor of 10 as compared with wild type. Mutation of PsaA-Trp(651) to Ser had an even larger impact on the dissociation constant. The K(D) value increased another 2-fold when the values obtained for the interaction and electron transfer between cyt c(6) and PSI from PsaA-W651S and PsaA-W651F are compared. In contrast, binding and electron transfer of pc to PSI from PsaA-W651S improved as compared with PSI from PsaA-W651F and admitted the formation of an inter-molecular electron transfer complex, resulting in a K(D) value of about 554 microm that is still five times higher than observed for wild type. These results demonstrate that PsaA-Trp(651) is, such as PsaB-Trp(627), crucial for high affinity binding of pc and cyt c(6) to PSI. Our results also indicate that the highly conserved structural recognition motif that is formed by PsaA-Trp(651) and PsaB-Trp(627) confers a differential selectivity in binding of both donors to PSI.
在光系统I(PSI)的腔侧,两个大的核心亚基PsaA和PsaB各自都有一个保守的色氨酸残基暴露于表面。PsaB-Trp(627)是疏水识别位点的一部分,该位点对于两个电子供体质体蓝素和细胞色素c6紧密结合到PSI的供体侧至关重要(索默,F.,德雷珀,F.,和希普勒,M.(2002年)《生物化学杂志》277,6573 - 6581)。为了研究PsaA-Trp(651)在两个供体与PSI的结合及电子转移中的功能,我们通过定点诱变和莱茵衣藻的生物弹道转化生成了突变体PsaA-W651F和PsaA-W651S。通过闪光吸收光谱分析了从突变体中分离出的供体与PSI之间的蛋白质 - 蛋白质相互作用及电子转移。PsaA-W651F突变完全消除了质体蓝素(pc)与改变后的PSI之间一级电子转移复合物的形成,并且与野生型相比,细胞色素(cyt)c6结合的解离常数增加了10倍以上。PsaA-Trp(651)突变为丝氨酸对解离常数的影响更大。当比较从PsaA-W651S和PsaA-W651F得到的cyt c6与PSI之间相互作用和电子转移的值时,K(D)值又增加了2倍。相比之下,与来自PsaA-W651F的PSI相比,来自PsaA-W651S的pc与PSI的结合及电子转移有所改善,并允许形成分子间电子转移复合物,导致K(D)值约为554微摩尔,仍比野生型观察到的值高五倍。这些结果表明,PsaA-Trp(651)与PsaB-Trp(627)一样,对于pc和cyt c6与PSI的高亲和力结合至关重要。我们的结果还表明,由PsaA-Trp(651)和PsaB-Trp(627)形成的高度保守的结构识别基序在两个供体与PSI的结合中赋予了不同的选择性。