Suppr超能文献

肿瘤血管生成的体内评估。

In vivo assessment of tumoral angiogenesis.

作者信息

Troprès I, Lamalle L, Péoc'h M, Farion R, Usson Y, Décorps M, Rémy C

机构信息

Unité mixte INSERM 594/Université Joseph Fourier, Laboratoire de Recherche Conventionné du CEA No. 30V, Hôpital Albert Michallon, and European Synchrotron Radiation Facility, Grenoble, France.

出版信息

Magn Reson Med. 2004 Mar;51(3):533-41. doi: 10.1002/mrm.20017.

Abstract

Vessel size imaging (VSI) for brain tumor characterization was evaluated and the vessel size index measured by MRI (VSIMRI) was correlated with VSI obtained by histology (VSIhisto). Blood volume (BV) and VSI maps were obtained on 12 rats by simultaneous measurements of R2* and R2, before and after the injection of a macromolecular contrast agent, AMI-227. Immunostaining of collagen IV in vessels was performed. An expression was derived for evaluating VSI from stereologic measurements on histology data (VSIhisto). On BV and VSI images obtained from large-size tumors (n = 9), three regions could be distinguished and correlated well with histological sections: a high BV region surrounding the tumor, a necrotic area where BV is very low, and a viable tumor tissue region showing lower BV but higher VSI than the normal rat cortex, with the presence of larger vessels. The quantitative analysis showed a good correlation (Spearman rank's rho = 0.74) between VSIhisto and VSIMRI with a linear regression coefficient of 1.17. The good correlation coefficient supports VSI imaging as a quantitative method for tumor vasculature characterization.

摘要

对用于脑肿瘤特征描述的血管大小成像(VSI)进行了评估,并将通过磁共振成像测量的血管大小指数(VSIMRI)与通过组织学获得的VSI(VSIhisto)进行了相关性分析。在12只大鼠中,在注射大分子造影剂AMI - 227之前和之后,通过同时测量R2*和R2获得血容量(BV)和VSI图。对血管中的IV型胶原进行免疫染色。从组织学数据的立体测量中得出了一个用于评估VSI的表达式(VSIhisto)。在从大尺寸肿瘤(n = 9)获得的BV和VSI图像上,可以区分出三个区域,并且与组织学切片相关性良好:肿瘤周围的高BV区域、BV非常低的坏死区域以及与正常大鼠皮质相比BV较低但VSI较高且存在较大血管的存活肿瘤组织区域。定量分析显示VSIhisto和VSIMRI之间具有良好的相关性(Spearman秩相关系数rho = 0.74),线性回归系数为1.17。良好的相关系数支持VSI成像作为一种用于肿瘤血管系统特征描述的定量方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验