Alba-Simionesco C, Dosseh G, Dumont E, Frick B, Geil B, Morineau D, Teboul V, Xia Y
Laboratoire de Chimie Physique, Université de Paris-Sud, CNRS-UMR 8000, Bâtiment 349, F-91405, Orsay, France.
Eur Phys J E Soft Matter. 2003 Sep;12(1):19-28. doi: 10.1140/epje/i2003-10055-1.
We relate the dynamical behavior of molecular liquids confined in mesoscopic cylindrical pores to the thermodynamic properties, heat capacity and density and to the static structure by combining different experimental methods (H-NMR, calorimetry, elastic and inelastic neutron scattering, numerical simulations). The crystallization process is greatly reduced or avoided by confinement under standard cooling conditions, instead a glass transition temperature T(g) at the 1000s time scale can be observed. The pore averaged local structure of the confined liquid is not noticeably affected when "excluded-volume" corrections are carefully applied, but follows the density changes reflected by the Bragg peak intensities of the porous matrices. The pore size dependence of T(g) is dominated by two factors, surface interaction and finite-size effect. For the smallest pores ([Formula: see text], [Formula: see text] being the van der Waals radius of a molecule), one observes an increase of T(g) and a broadening of the transition region, related to the interaction with the surface that induces a slowing-down of the molecules close to the wall. This is confirmed by neutron scattering experiments and molecular-dynamics simulations at shorter time scales and higher temperatures, which indicate a remaining fraction of frozen molecules. For larger pore sizes, taking the decrease of density under confinement conditions into account, a decrease of T(g) is observed. This could be related to finite-size effects onto the putative cooperativity length that is often invoked to explain glass formation. However, no quantitative determination of this length (not to mention its T-dependence) can be extracted, since the interaction with the wall itself introduces an additional length that adds to the complexity of the problem.
我们通过结合不同的实验方法(氢核磁共振、量热法、弹性和非弹性中子散射、数值模拟),将限制在介观圆柱形孔中的分子液体的动力学行为与热力学性质、热容和密度以及静态结构联系起来。在标准冷却条件下,通过限制作用,结晶过程大大减少或避免,相反,可以观察到在1000秒时间尺度上的玻璃化转变温度T(g)。当仔细应用“排除体积”校正时,受限液体的孔平均局部结构没有明显受到影响,但遵循多孔基质布拉格峰强度所反映的密度变化。T(g)的孔径依赖性由两个因素主导,即表面相互作用和有限尺寸效应。对于最小的孔([公式:见正文],[公式:见正文]为分子的范德华半径),观察到T(g)升高且转变区域变宽,这与与表面的相互作用有关,这种相互作用导致靠近壁的分子减速。这在较短时间尺度和较高温度下的中子散射实验和分子动力学模拟中得到证实,这些实验和模拟表明存在一部分冻结分子。对于较大的孔径,考虑到限制条件下密度的降低,观察到T(g)降低。这可能与对通常用于解释玻璃形成的假定协同长度的有限尺寸效应有关。然而,由于与壁本身的相互作用引入了额外的长度,增加了问题的复杂性,因此无法对该长度进行定量测定(更不用说其与温度的依赖性了)。