Kalogeras I M, Neagu E R
Department of Physics, Section of Solid State Physics, University of Athens, Panepistimiopolis, 157 84, Zografos, Greece.
Eur Phys J E Soft Matter. 2004 Jun;14(2):193-204. doi: 10.1140/epje/i2004-10015-3.
The thermally stimulated current (TSC) signatures of the primary (alpha) transition and its precursor, the Johary-Goldstein (beta) relaxation, are used to probe effects of nanoconfinement on the dielectric relaxation dynamics of poly(methyl methacrylate) (PMMA) radically polymerised in situ 50 angstroms mean pore size silica-gel. Nanoconfinement leads to a broadened and low-temperature-shifted beta band (peaking at Tbeta, with deltaTbeta = T(conf.)beta - T(bulk)beta = -15 degrees C for a heating rate of 5 deg/min), signifying the occurrence of faster relaxing moieties compared to the bulk-like PMMA film. Furthermore, both TSCs and differential scanning calorimetry (DSC) estimate a rise of the glass transition temperature for the confined phase ([Formula: see text]= +13 degrees C) and an increased width for the corresponding transition signals, relative to the signals in the bulk. Simple free-volume and entropy models seem inadequate to provide a collective description of the above perturbations. The observation of a spatial heterogeneity regarding the relaxation dynamics is discussed in terms of the presence of a motional gradient, with less mobile segments near the interface and more mobile segments in the core, and the interplay of adsorption ( e.g., strong physical interactions that slow down molecular mobilities) and confinement effects ( e.g., lower entanglements concentration and local density fluctuations that provide regions of increased free space). The results suggest that in the case of high-molecular-weight polymers confined in small-pore systems, adsorption effects have considerable bearing on the glass transition phenomenon whereas confinement primarily influences side-chains' rotational mobilities. The confinement effect is expected to dominate over adsorption for PMMA phases occluded in higher pore sizes and silanised walls.
利用初级(α)转变及其前驱体乔哈里-戈尔茨坦(β)弛豫的热刺激电流(TSC)特征,来探究纳米限域对在平均孔径为50埃的硅胶中原位自由基聚合的聚甲基丙烯酸甲酯(PMMA)介电弛豫动力学的影响。纳米限域导致β带变宽且向低温偏移(在Tβ处达到峰值,对于5℃/min的升温速率,ΔTβ = T(conf.)β - T(bulk)β = -15℃),这表明与本体状PMMA薄膜相比,出现了弛豫更快的部分。此外,相对于本体中的信号,热刺激电流(TSC)和差示扫描量热法(DSC)都估计受限相的玻璃化转变温度升高([公式:见原文]= +13℃),且相应转变信号的宽度增加。简单的自由体积和熵模型似乎不足以全面描述上述扰动。根据运动梯度的存在,讨论了弛豫动力学的空间异质性,即界面附近链段运动性较低,核心处链段运动性较高,以及吸附(例如,减缓分子运动性的强物理相互作用)和限域效应(例如,较低的缠结浓度和提供增加自由空间区域的局部密度波动)之间的相互作用。结果表明,在小孔系统中受限的高分子量聚合物的情况下,吸附效应与玻璃化转变现象密切相关,而限域主要影响侧链的旋转运动性。对于封闭在较大孔径和硅烷化壁中的PMMA相,预计限域效应将超过吸附效应。