Suppr超能文献

电化学势使休眠孢子能够整合环境信号。

Electrochemical potential enables dormant spores to integrate environmental signals.

机构信息

Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.

出版信息

Science. 2022 Oct 7;378(6615):43-49. doi: 10.1126/science.abl7484. Epub 2022 Oct 6.

Abstract

The dormant state of bacterial spores is generally thought to be devoid of biological activity. We show that despite continued dormancy, spores can integrate environmental signals over time through a preexisting electrochemical potential. Specifically, we studied thousands of individual spores that remain dormant when exposed to transient nutrient pulses. Guided by a mathematical model of bacterial electrophysiology, we modulated the decision to exit dormancy by genetically and chemically targeting potassium ion flux. We confirmed that short nutrient pulses result in step-like changes in the electrochemical potential of persistent spores. During dormancy, spores thus gradually release their stored electrochemical potential to integrate extracellular information over time. These findings reveal a decision-making mechanism that operates in physiologically inactive cells.

摘要

细菌孢子的休眠状态通常被认为是缺乏生物活性的。我们表明,尽管持续休眠,孢子仍然可以通过预先存在的电化学势来随时间整合环境信号。具体来说,我们研究了数千个在暴露于短暂营养脉冲时仍处于休眠状态的单个孢子。在细菌电生理学数学模型的指导下,我们通过遗传和化学靶向钾离子通量来调节退出休眠的决策。我们证实,短暂的营养脉冲会导致持久孢子的电化学势发生阶跃式变化。因此,在休眠期间,孢子会逐渐释放其存储的电化学势,以随时间整合细胞外信息。这些发现揭示了一种在生理上不活跃的细胞中起作用的决策机制。

相似文献

1
Electrochemical potential enables dormant spores to integrate environmental signals.
Science. 2022 Oct 7;378(6615):43-49. doi: 10.1126/science.abl7484. Epub 2022 Oct 6.
2
An electric alarm clock for spores.
Science. 2022 Oct 7;378(6615):25-26. doi: 10.1126/science.ade3921. Epub 2022 Oct 6.
3
Memory of Germinant Stimuli in Bacterial Spores.
mBio. 2015 Nov 24;6(6):e01859-15. doi: 10.1128/mBio.01859-15.
4
Thermal properties of bacterial spores and biopolymers.
Int J Food Microbiol. 2003 Jan 25;80(2):131-43. doi: 10.1016/s0168-1605(02)00139-3.
5
Analysis of temporal gene expression during Bacillus subtilis spore germination and outgrowth.
J Bacteriol. 2007 May;189(9):3624-34. doi: 10.1128/JB.01736-06. Epub 2007 Feb 23.
7
Triple fixation of Bacillus subtilis dormant spores.
J Bacteriol. 1983 Oct;156(1):409-13. doi: 10.1128/jb.156.1.409-413.1983.
8
Levels of germination proteins in Bacillus subtilis dormant, superdormant, and germinating spores.
PLoS One. 2014 Apr 21;9(4):e95781. doi: 10.1371/journal.pone.0095781. eCollection 2014.
9
Exit from dormancy in microbial organisms.
Nat Rev Microbiol. 2010 Dec;8(12):890-6. doi: 10.1038/nrmicro2453. Epub 2010 Oct 25.
10
RNA dynamics in aging bacterial spores.
Cell. 2012 Jan 20;148(1-2):139-49. doi: 10.1016/j.cell.2011.11.059. Epub 2011 Dec 29.

引用本文的文献

1
Bioelectronic Delivery of Potassium Ions Controls Membrane Voltage and Growth Dynamics in Bacteria Biofilms.
Biomed Mater Devices. 2025 Mar;3(1):646-654. doi: 10.1007/s44174-024-00209-w. Epub 2024 Jul 2.
3
Resuscitation-promoting factor (Rpf) terminates dormancy among diverse soil bacteria.
mSystems. 2025 May 20;10(5):e0151724. doi: 10.1128/msystems.01517-24. Epub 2025 Apr 16.
4
Modeling heterogeneity, commitment, and memory of bacterial spore germination.
mBio. 2025 May 14;16(5):e0059625. doi: 10.1128/mbio.00596-25. Epub 2025 Apr 2.
5
Aging-dependent evolving electrochemical potentials of biomolecular condensates regulate their physicochemical activities.
Nat Chem. 2025 May;17(5):756-766. doi: 10.1038/s41557-025-01762-7. Epub 2025 Mar 12.
6
A Game of Life with dormancy.
Proc Biol Sci. 2025 Jan;292(2039):20242543. doi: 10.1098/rspb.2024.2543. Epub 2025 Jan 29.
7
Toward measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime.
Biophys Rep (N Y). 2025 Mar 12;5(1):100196. doi: 10.1016/j.bpr.2025.100196. Epub 2025 Jan 10.
8
Recent progress in proteins regulating the germination of spores.
J Bacteriol. 2025 Feb 20;207(2):e0028524. doi: 10.1128/jb.00285-24. Epub 2025 Jan 8.
9
Collective dynamical regimes predict invasion success and impacts in microbial communities.
Nat Ecol Evol. 2025 Mar;9(3):406-416. doi: 10.1038/s41559-024-02618-y. Epub 2025 Jan 6.

本文引用的文献

1
Molecular Mechanisms for Bacterial Potassium Homeostasis.
J Mol Biol. 2021 Aug 6;433(16):166968. doi: 10.1016/j.jmb.2021.166968. Epub 2021 Mar 30.
2
Bacterial Spore mRNA - What's Up With That?
Front Microbiol. 2020 Oct 26;11:596092. doi: 10.3389/fmicb.2020.596092. eCollection 2020.
3
Encoding Membrane-Potential-Based Memory within a Microbial Community.
Cell Syst. 2020 May 20;10(5):417-423.e3. doi: 10.1016/j.cels.2020.04.002. Epub 2020 Apr 27.
4
Electrical Polarization Enables Integrative Quality Control during Bacterial Differentiation into Spores.
iScience. 2019 Jun 28;16:378-389. doi: 10.1016/j.isci.2019.05.044. Epub 2019 Jun 5.
5
Magnesium Flux Modulates Ribosomes to Increase Bacterial Survival.
Cell. 2019 Apr 4;177(2):352-360.e13. doi: 10.1016/j.cell.2019.01.042. Epub 2019 Mar 7.
6
Metal-Free Synthesis of 2-Arylbenzothiazoles from Aldehydes, Amines, and Thiocyanate.
Org Lett. 2019 Mar 15;21(6):1686-1689. doi: 10.1021/acs.orglett.9b00245. Epub 2019 Feb 27.
7
Can fern spores develop hydration memory in response to priming?
J Plant Physiol. 2019 Jan;232:284-290. doi: 10.1016/j.jplph.2018.11.022. Epub 2018 Nov 23.
8
Calibration and characterization of intracellular Asante Potassium Green probes, APG-2 and APG-4.
Anal Biochem. 2019 Feb 15;567:8-13. doi: 10.1016/j.ab.2018.11.024. Epub 2018 Nov 30.
9
Signal Percolation within a Bacterial Community.
Cell Syst. 2018 Aug 22;7(2):137-145.e3. doi: 10.1016/j.cels.2018.06.005. Epub 2018 Jul 25.
10
Sporulation: how to survive on planet Earth (and beyond).
Curr Genet. 2017 Oct;63(5):831-838. doi: 10.1007/s00294-017-0694-7. Epub 2017 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验