Yoshida Takashi, Katoh Akira, Ohtsuki Gen, Mishina Masayoshi, Hirano Tomoo
Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
J Neurosci. 2004 Mar 10;24(10):2440-8. doi: 10.1523/JNEUROSCI.0783-03.2004.
How failures in regulation of synaptic transmission in the mammalian CNS affect neuronal activity and disturb motor coordination is addressed. The mutant mouse deficient in the glutamate receptor delta2 subunit, specifically expressed in cerebellar Purkinje neurons, has defects in synaptic regulations such as synaptic plasticity, stabilization, and elimination of synaptic connections and shows failures in motor coordination and learning. In this study, the cause of motor discoordination of the delta2 mutant mouse was analyzed by comparing its motor control ability with those of the wild-type mouse and the lurcher mutant mouse, which loses all Purkinje neurons, the sole output neurons in the cerebellar cortex. Unexpectedly, the delta2 mutant mouse showed severer motor discoordination than the lurcher mouse without any cerebellar cortical outputs. The delta2 mutant mouse showed involuntary spontaneous eye movement with characteristic 10 Hz oscillation, which disappeared by ablation of the cerebellar flocculus, suggesting that the delta2 mutant cerebellar cortex outputs an abnormal signal. In vivo extracellular recordings of neuronal activity revealed that Purkinje neurons tended to fire clustered action potentials and complex spikes at approximately 10 Hz in the delta2 mutant mouse. A whole-cell patch-clamp recording from Purkinje neurons in cerebellar slices indicated that the clustered action potentials could be induced by climbing fiber activation. Taken together, our results suggest that the delta2 subunit deficiency produces the oscillating activity in Purkinje neurons by enhancing climbing fiber inputs, causing surplus movement and affecting motor control worse than no signal at all.
本文探讨了哺乳动物中枢神经系统中突触传递调节失败如何影响神经元活动并干扰运动协调。缺乏谷氨酸受体δ2亚基的突变小鼠,该亚基在小脑浦肯野神经元中特异性表达,在突触调节方面存在缺陷,如突触可塑性、稳定性以及突触连接的消除,并表现出运动协调和学习方面的障碍。在本研究中,通过将δ2突变小鼠的运动控制能力与野生型小鼠和蹒跚突变小鼠(该突变小鼠失去了小脑皮质中唯一的输出神经元——所有浦肯野神经元)的运动控制能力进行比较,分析了δ2突变小鼠运动失调的原因。出乎意料的是,δ2突变小鼠表现出比没有任何小脑皮质输出的蹒跚小鼠更严重的运动失调。δ2突变小鼠表现出不自主的自发眼球运动,伴有特征性的10Hz振荡,通过切除小脑绒球后这种振荡消失,这表明δ2突变的小脑皮质输出了异常信号。神经元活动的体内细胞外记录显示,在δ2突变小鼠中,浦肯野神经元倾向于以大约10Hz的频率发放成簇动作电位和复合尖峰。从小脑切片中的浦肯野神经元进行的全细胞膜片钳记录表明,成簇动作电位可由攀缘纤维激活诱导产生。综上所述,我们的结果表明,δ2亚基缺陷通过增强攀缘纤维输入在浦肯野神经元中产生振荡活动,导致过度运动,并且比完全没有信号对运动控制的影响更严重。