Suppr超能文献

基于稀疏放电频率的神经元脉冲序列分类

Sparse firing frequency-based neuron spike train classification.

作者信息

Chen Yan, Marchenko Vitaliy, Rogers Robert F

机构信息

Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA.

出版信息

Neurosci Lett. 2008 Jul 4;439(1):47-51. doi: 10.1016/j.neulet.2008.05.001. Epub 2008 May 7.

Abstract

Peri-stimulus time histograms (PSTHs) reveal the temporal distribution of action potentials, averaged over many stimulus presentations. PSTHs have been used as model responses to solve the classification problem, in which a single response (i.e., spike train) is assigned to one of a set of response models evoked by a set of stimuli. In this study, we developed and applied a sparse firing frequency-based method to classify individual spike trains of slowly adapting pulmonary stretch receptors (SARs). Extracellularly recorded individual SAR spike trains were evoked by one of three different lung inflation volumes in anesthetized, paralyzed adult male New Zealand White rabbits. Three different PSTH-based firing frequency response models (i.e., one for each stimulus) were constructed from two-thirds of the responses to the 600 inflations presented at each volume, while the remaining one-third were used as responses to be classified. An instantaneous firing frequency representation of each remaining "test response" was computed from their individual spike trains, using one of two forms: sparse and filled. The sparse format assigned instantaneous firing rate values only in bins that contained spikes, while the filled format assigned values to intervening bins too. Classification was performed by computing the Euclidean distance between the response spike trains and the three PSTH-based models using both sparse and filled representations. When comparing the two representations with regard to classification accuracy, we found that the sparse representation does not diminish performance appreciably, while reducing computational burden significantly.

摘要

刺激后时间直方图(PSTHs)揭示了在多次刺激呈现过程中平均后的动作电位的时间分布。PSTHs已被用作模型响应来解决分类问题,即在该问题中,单个响应(即脉冲序列)被分配到由一组刺激诱发的一组响应模型中的一个。在本研究中,我们开发并应用了一种基于稀疏放电频率的方法来对慢适应性肺牵张感受器(SARs)的单个脉冲序列进行分类。在麻醉、麻痹的成年雄性新西兰白兔中,通过三种不同的肺充气量之一诱发细胞外记录的单个SAR脉冲序列。从每种充气量下呈现的600次充气的三分之二响应中构建三种不同的基于PSTH的放电频率响应模型(即每种刺激一个模型),而其余三分之一用作待分类的响应。使用稀疏和填充两种形式之一,从每个剩余的“测试响应”的单个脉冲序列中计算其瞬时放电频率表示。稀疏格式仅在包含脉冲的区间内分配瞬时放电率值,而填充格式也在中间区间内分配值。通过使用稀疏和填充表示计算响应脉冲序列与三种基于PSTH的模型之间的欧几里得距离来进行分类。当比较两种表示在分类准确性方面的情况时,我们发现稀疏表示不会明显降低性能,同时显著减轻了计算负担。

相似文献

1
Sparse firing frequency-based neuron spike train classification.基于稀疏放电频率的神经元脉冲序列分类
Neurosci Lett. 2008 Jul 4;439(1):47-51. doi: 10.1016/j.neulet.2008.05.001. Epub 2008 May 7.
6
Two distinct mechanisms shape the reliability of neural responses.两种不同的机制塑造了神经反应的可靠性。
J Neurophysiol. 2009 May;101(5):2239-51. doi: 10.1152/jn.90711.2008. Epub 2009 Feb 4.
8
Measuring spike pattern reliability with the Lempel-Ziv-distance.用莱姆尔-齐夫距离测量尖峰模式可靠性。
J Neurosci Methods. 2006 Sep 30;156(1-2):342-50. doi: 10.1016/j.jneumeth.2006.02.023. Epub 2006 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验