Girvan Hazel M, Marshall Ker R, Lawson Rachel J, Leys David, Joyce M Gordon, Clarkson John, Smith W Ewen, Cheesman Myles R, Munro Andrew W
Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom.
J Biol Chem. 2004 May 28;279(22):23274-86. doi: 10.1074/jbc.M401716200. Epub 2004 Mar 12.
A conserved glutamate covalently attaches the heme to the protein backbone of eukaryotic CYP4 P450 enzymes. In the related Bacillus megaterium P450 BM3, the corresponding residue is Ala264. The A264E mutant was generated and characterized by kinetic and spectroscopic methods. A264E has an altered absorption spectrum compared with the wild-type enzyme (Soret maximum at approximately 420.5 nm). Fatty acid substrates produced an inhibitor-like spectral change, with the Soret band shifting to 426 nm. Optical titrations with long-chain fatty acids indicated higher affinity for A264E over the wild-type enzyme. The heme iron midpoint reduction potential in substrate-free A264E is more positive than that in wild-type P450 BM3 and was not changed upon substrate binding. EPR, resonance Raman, and magnetic CD spectroscopies indicated that A264E remains in the low-spin state upon substrate binding, unlike wild-type P450 BM3. EPR spectroscopy showed two major species in substrate-free A264E. The first has normal Cys-aqua iron ligation. The second resembles formate-ligated P450cam. Saturation with fatty acid increased the population of the latter species, suggesting that substrate forces on the glutamate to promote a Cys-Glu ligand set, present in lower amounts in the substrate-free enzyme. A novel charge-transfer transition in the near-infrared magnetic CD spectrum provides a spectroscopic signature characteristic of the new A264E heme iron ligation state. A264E retains oxygenase activity, despite glutamate coordination of the iron, indicating that structural rearrangements occur following heme iron reduction to allow dioxygen binding. Glutamate coordination of the heme iron is confirmed by structural studies of the A264E mutant (Joyce, M. G., Girvan, H. M., Munro, A. W., and Leys, D. (2004) J. Biol. Chem. 279, 23287-23293).
一个保守的谷氨酸残基将血红素共价连接到真核细胞色素P450 CYP4酶的蛋白质主链上。在相关的巨大芽孢杆菌P450 BM3中,对应的残基是Ala264。通过动力学和光谱学方法对A264E突变体进行了构建和表征。与野生型酶相比,A264E的吸收光谱发生了改变(Soret峰最大值在约420.5 nm处)。脂肪酸底物产生了类似抑制剂的光谱变化,Soret带移至426 nm。用长链脂肪酸进行的光学滴定表明,A264E对脂肪酸的亲和力高于野生型酶。在无底物的A264E中,血红素铁的中点还原电位比野生型P450 BM3中的更正,并且在底物结合后没有变化。电子顺磁共振(EPR)、共振拉曼光谱和磁圆二色光谱表明,与野生型P450 BM3不同,A264E在底物结合后仍保持低自旋状态。EPR光谱显示在无底物的A264E中有两种主要状态。第一种具有正常的半胱氨酸-水合铁配位。第二种类似于甲酸根配位的P450cam。脂肪酸饱和增加了后一种状态的比例,这表明底物对谷氨酸有作用力,促使形成半胱氨酸-谷氨酸配体组合,在无底物的酶中这种组合的含量较低。近红外磁圆二色光谱中的一种新型电荷转移跃迁提供了新的A264E血红素铁配位状态的光谱特征。尽管铁由谷氨酸配位,A264E仍保留加氧酶活性,这表明在血红素铁还原后发生了结构重排以允许双氧结合。对A264E突变体的结构研究证实了血红素铁由谷氨酸配位(乔伊斯,M.G.,吉尔万,H.M.,芒罗,A.W.,和莱伊斯,D.(2004年)《生物化学杂志》279,23287 - 23293)。