Campa Cristiana, Holtan Synnøve, Nilsen Nadra, Bjerkan Tonje M, Stokke Bjørn T, Skjåk-Braek Gudmund
Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Italy.
Biochem J. 2004 Jul 1;381(Pt 1):155-64. doi: 10.1042/BJ20031265.
The enzymes mannuronan C-5 epimerases catalyse the in-chain epimerisation of beta-D-mannuronic acid to alpha-L-guluronic acid in the last step of alginate biosynthesis. The recombinant C-5 epimerase AlgE4, encoded by the soil bacteria Azotobacter vinelandii and expressed in Escherichia coli, exhibits a non-random mode of action when acting on mannuronan and alginates of various monomeric compositions. The observed residue sequence has been suggested previously to be due to either a preferred attack or a processive mode of action. Based on methodologies involving specific degrading enzymes, NMR, electrospray ionisation mass spectrometry and capillary electrophoresis we show here that on average 10 residues are epimerised for each enzyme-substrate encounter. A subsite model for the enzyme is analysed by the same methodology using native and 13C-labelled mannuronan oligomers as substrate for the AlgE4 epimerase. A hexameric oligomer is the minimum size to accommodate activity. For hexa-, hepta- and octameric substrates the third M residue from the non-reducing end is epimerised first.
甘露糖醛酸C-5差向异构酶在藻酸盐生物合成的最后一步催化β-D-甘露糖醛酸在链内差向异构化为α-L-古洛糖醛酸。由土壤细菌维氏固氮菌编码并在大肠杆菌中表达的重组C-5差向异构酶AlgE4,在作用于具有不同单体组成的甘露聚糖和藻酸盐时表现出非随机作用模式。先前已提出观察到的残基序列是由于优先攻击或连续作用模式。基于涉及特定降解酶、核磁共振、电喷雾电离质谱和毛细管电泳的方法,我们在此表明,每次酶-底物相遇平均有10个残基发生差向异构化。使用天然和13C标记的甘露聚糖寡聚物作为AlgE4差向异构酶的底物,通过相同方法分析了该酶的亚位点模型。六聚体寡聚物是容纳活性的最小尺寸。对于六聚体、七聚体和八聚体底物,非还原端的第三个M残基首先发生差向异构化。