Kung Justin W, Matsumoto Sumiaki, Hasegawa Ichiro, Nguyen Binh, Toto Lawrence C, Kundel Harold, Hatabu Hiroto
Department of Radiology, University of Pennsylvania, 3600 Science Center, Suite 370, 3600 Market St, Philadelphia, PA 19104, USA.
Acad Radiol. 2004 Mar;11(3):281-5. doi: 10.1016/s1076-6332(03)00717-7.
To compare the effectiveness of a new computational scheme for pulmonary nodule detection in computed tomography images against human observers.
The study involved evaluation of 81 potential nodules by four radiologists. Each radiologist separately evaluated the potential nodules and provided a confidence level for the presence of pulmonary nodules. Their performance was compared with that of the new computational scheme by mixture distribution analysis.
Mixture distribution analysis of the results of the four radiologists demonstrated a relative proportion agreement of 0.84. The kappa statistic was used to compare the agreement of the computational scheme with the results of the four radiologists. A kappa value of .65 (se = .11) was shown to be significantly different from chance (P = .99).
The new computational scheme correlates well with the radiologists' subjective rankings of pulmonary nodules on computed tomography scans and may prove a useful tool in the evaluation of algorithms for the screening and diagnosis of lung cancer.
比较一种用于计算机断层扫描图像中肺结节检测的新计算方案与人类观察者的有效性。
该研究涉及由四位放射科医生对81个潜在结节进行评估。每位放射科医生分别评估这些潜在结节,并为肺结节的存在提供置信水平。通过混合分布分析将他们的表现与新计算方案的表现进行比较。
对四位放射科医生的结果进行混合分布分析显示相对比例一致性为0.84。kappa统计量用于比较计算方案与四位放射科医生结果的一致性。显示kappa值为0.65(标准误=0.11),与随机情况有显著差异(P=0.99)。
新的计算方案与放射科医生在计算机断层扫描上对肺结节的主观排名相关性良好,可能证明是评估肺癌筛查和诊断算法的有用工具。