Suppr超能文献

实性、部分实性或非实性?:计算机辅助诊断系统在低剂量胸部 CT 中对肺结节的分类。

Solid, part-solid, or non-solid?: classification of pulmonary nodules in low-dose chest computed tomography by a computer-aided diagnosis system.

机构信息

From the *Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; †Fraunhofer MEVIS, Bremen, Germany; ‡Department of Radiology, Kennemer Gasthuis, Haarlem; §Department of Radiology, University Medical Center Utrecht, Utrecht; and ∥Department of Radiology, Meander Medical Center, Amersfoort, the Netherlands.

出版信息

Invest Radiol. 2015 Mar;50(3):168-73. doi: 10.1097/RLI.0000000000000121.

Abstract

OBJECTIVES

The purpose of this study was to develop and validate a computer-aided diagnosis (CAD) tool for automatic classification of pulmonary nodules seen on low-dose computed tomography into solid, part-solid, and non-solid.

MATERIALS AND METHODS

Study lesions were randomly selected from 2 sites participating in the Dutch-Belgian NELSON lung cancer screening trial. On the basis of the annotations made by the screening radiologists, 50 part-solid and 50 non-solid pulmonary nodules with a diameter between 5 and 30 mm were randomly selected from the 2 sites. For each unique nodule, 1 low-dose chest computed tomographic scan was randomly selected, in which the nodule was visible. In addition, 50 solid nodules in the same size range were randomly selected. A completely automatic 3-dimensional segmentation-based classification system was developed, which analyzes the pulmonary nodule, extracting intensity-, texture-, and segmentation-based features to perform a statistical classification. In addition to the nodule classification by the screening radiologists, an independent rating of all nodules by 3 experienced thoracic radiologists was performed. Performance of CAD was evaluated by comparing the agreement between CAD and human experts and among human experts using the Cohen κ statistics.

RESULTS

Pairwise agreement for the differentiation between solid, part-solid, and non-solid nodules between CAD and each of the human experts had a κ range between 0.54 and 0.72. The interobserver agreement among the human experts was in the same range (κ range, 0.56-0.81).

CONCLUSIONS

A novel automated classification tool for pulmonary nodules achieved good agreement with the human experts, yielding κ values in the same range as the interobserver agreement. Computer-aided diagnosis may aid radiologists in selecting the appropriate workup for pulmonary nodules.

摘要

目的

本研究旨在开发和验证一种计算机辅助诊断(CAD)工具,用于自动将低剂量计算机断层扫描(CT)上的肺部结节分为实性、部分实性和非实性。

材料与方法

研究病变随机选自参加荷兰-比利时 NELSON 肺癌筛查试验的 2 个地点。根据筛查放射科医生的注释,从这 2 个地点中随机选择 50 个部分实性和 50 个非实性直径在 5 至 30 毫米之间的肺结节。对于每个独特的结节,随机选择 1 个可观察到结节的低剂量胸部 CT 扫描。此外,随机选择 50 个相同大小范围内的实性结节。开发了一种完全自动的基于 3 维分割的分类系统,该系统分析肺部结节,提取基于强度、纹理和分割的特征,进行统计分类。除了由筛查放射科医生进行的结节分类外,还由 3 名经验丰富的胸部放射科医生对所有结节进行独立评估。通过比较 CAD 与人类专家之间以及人类专家之间的一致性,使用 Cohen κ 统计来评估 CAD 的性能。

结果

CAD 与每位人类专家在区分实性、部分实性和非实性结节方面的两两一致性的 κ 值范围在 0.54 至 0.72 之间。人类专家之间的观察者间一致性也在相同范围内(κ 值范围为 0.56 至 0.81)。

结论

一种新型的自动肺结节分类工具与人类专家具有良好的一致性,κ 值与观察者间一致性相当。计算机辅助诊断可能有助于放射科医生为肺部结节选择适当的检查方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验