Liu Z Lewis, Dien Bruce S
BioEnergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604, USA.
Int J Microbiol. 2022 Mar 7;2022:7853935. doi: 10.1155/2022/7853935. eCollection 2022.
Reducing the cost of cellulosic ethanol production, especially for cellulose hydrolytic enzymes, is vital to growing a sustainable and efficient cellulosic ethanol industry and bio-based economy. Using an ethanologenic yeast able to produce hydrolytic enzymes, such as NRRL Y-50464, is one solution. NRRL Y-50464 is fast-growing and robust, and tolerates inhibitory compounds 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF) associated with lignocellulose-to-fuel conversion. It produces three forms of -glucosidase isozymes, BGL1, BGL2, and BGL3, and ferment cellobiose as the sole carbon source. These -glucosidases exhibited desirable enzyme kinetic parameters and high levels of enzyme-specific activity toward cellobiose and many oligosaccharide substrates. They tolerate the product inhibition of glucose and ethanol, and are stable to temperature and pH conditions. These characteristics are desirable for more efficient cellulosic ethanol production by simultaneous saccharification and fermentation. NRRL Y-50464 provided the highest cellulosic ethanol titers and conversion rates at lower cellulase loadings, using either pure cellulose or agricultural residues, as so far reported in the literature. This review summarizes NRRL Y-50464 performance on cellulosic ethanol production from refined cellulose, rice straw, and corn stover processed in various ways, in the presence or absence of furfural and HMF. This dual functional yeast has potential to serve as a prototype for the development of next-generation biocatalysts. Perspectives on continued strain development and process engineering improvements for more efficient cellulosic ethanol production from lignocellulosic materials are also discussed.
降低纤维素乙醇的生产成本,尤其是纤维素水解酶的成本,对于发展可持续且高效的纤维素乙醇产业和生物基经济至关重要。使用能够产生水解酶的产乙醇酵母,如NRRL Y - 50464,是一种解决方案。NRRL Y - 50464生长迅速且健壮,能够耐受与木质纤维素转化为燃料相关的抑制性化合物2 - 糠醛(糠醛)和5 - 羟甲基 - 2 - 糠醛(HMF)。它能产生三种形式的β - 葡萄糖苷酶同工酶,即BGL1、BGL2和BGL3,并且能以纤维二糖作为唯一碳源进行发酵。这些β - 葡萄糖苷酶展现出理想的酶动力学参数,对纤维二糖和许多寡糖底物具有高水平的酶比活性。它们能够耐受葡萄糖和乙醇的产物抑制作用,并且在温度和pH条件下稳定。这些特性对于通过同步糖化发酵更高效地生产纤维素乙醇是有利的。据文献报道,到目前为止,在较低纤维素酶负载量下,使用纯纤维素或农业残留物时,NRRL Y - 50464能提供最高的纤维素乙醇滴度和转化率。本综述总结了NRRL Y - 50464在存在或不存在糠醛和HMF的情况下,对以各种方式加工的精制纤维素、稻草和玉米秸秆生产纤维素乙醇的性能。这种双功能酵母有潜力作为下一代生物催化剂开发的原型。文中还讨论了关于持续进行菌株开发和工艺工程改进以更高效地从木质纤维素材料生产纤维素乙醇的前景。