Suppr超能文献

适应性实验室进化作为一种有效的生物发现和工业生物技术工具的出现。

The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology.

机构信息

Department of Bioengineering, University of California, San Diego, CA, 92093, USA.

Department of Bioengineering, University of California, San Diego, CA, 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.

出版信息

Metab Eng. 2019 Dec;56:1-16. doi: 10.1016/j.ymben.2019.08.004. Epub 2019 Aug 8.

Abstract

Harnessing the process of natural selection to obtain and understand new microbial phenotypes has become increasingly possible due to advances in culturing techniques, DNA sequencing, bioinformatics, and genetic engineering. Accordingly, Adaptive Laboratory Evolution (ALE) experiments represent a powerful approach both to investigate the evolutionary forces influencing strain phenotypes, performance, and stability, and to acquire production strains that contain beneficial mutations. In this review, we summarize and categorize the applications of ALE to various aspects of microbial physiology pertinent to industrial bioproduction by collecting case studies that highlight the multitude of ways in which evolution can facilitate the strain construction process. Further, we discuss principles that inform experimental design, complementary approaches such as computational modeling that help maximize utility, and the future of ALE as an efficient strain design and build tool driven by growing adoption and improvements in automation.

摘要

由于培养技术、DNA 测序、生物信息学和遗传工程的进步,利用自然选择的过程来获取和理解新的微生物表型变得越来越可能。因此,适应性实验室进化(ALE)实验是一种强有力的方法,可以研究影响菌株表型、性能和稳定性的进化力量,并获得含有有益突变的生产菌株。在这篇综述中,我们通过收集案例研究,总结和分类了 ALE 在与工业生物生产相关的微生物生理学各个方面的应用,这些案例研究强调了进化可以促进菌株构建过程的多种方式。此外,我们还讨论了指导实验设计的原则、有助于最大限度发挥效用的计算建模等补充方法,以及随着自动化程度的提高和应用的增加,ALE 作为一种有效的菌株设计和构建工具的未来。

相似文献

2
Current Status and Applications of Adaptive Laboratory Evolution in Industrial Microorganisms.
J Microbiol Biotechnol. 2020 Jun 28;30(6):793-803. doi: 10.4014/jmb.2003.03072.
3
Evolutionary engineering of Corynebacterium glutamicum.
Biotechnol J. 2019 Sep;14(9):e1800444. doi: 10.1002/biot.201800444. Epub 2019 Jun 7.
4
Recent progress in adaptive laboratory evolution of industrial microorganisms.
J Ind Microbiol Biotechnol. 2023 Feb 17;50(1). doi: 10.1093/jimb/kuac023.
5
Recent advances in the evolutionary engineering of industrial biocatalysts.
Genomics. 2014 Dec;104(6 Pt A):406-11. doi: 10.1016/j.ygeno.2014.09.006. Epub 2014 Sep 28.
6
Evolutionary engineering of industrial microorganisms-strategies and applications.
Appl Microbiol Biotechnol. 2018 Jun;102(11):4615-4627. doi: 10.1007/s00253-018-8937-1. Epub 2018 Apr 5.
7
[Advances in adaptive laboratory evolutionary engineering to microbial breeding].
Sheng Wu Gong Cheng Xue Bao. 2021 Jan 25;37(1):130-141. doi: 10.13345/j.cjb.200225.
8
Adaptive laboratory evolution--harnessing the power of biology for metabolic engineering.
Curr Opin Biotechnol. 2011 Aug;22(4):590-4. doi: 10.1016/j.copbio.2011.03.007. Epub 2011 Apr 14.
9
Adaptive laboratory evolution principles and applications in industrial biotechnology.
Biotechnol Adv. 2022 Jan-Feb;54:107795. doi: 10.1016/j.biotechadv.2021.107795. Epub 2021 Jul 9.
10
A Model for Designing Adaptive Laboratory Evolution Experiments.
Appl Environ Microbiol. 2017 Mar 31;83(8). doi: 10.1128/AEM.03115-16. Print 2017 Apr 15.

引用本文的文献

5
A single-nucleotide variant conditions the ability vs. inability of to utilize L-lactate.
Appl Environ Microbiol. 2025 Jul 23;91(7):e0059925. doi: 10.1128/aem.00599-25. Epub 2025 Jun 12.
7
Bioremediation of complex organic pollutants by engineered Vibrio natriegens.
Nature. 2025 May 7. doi: 10.1038/s41586-025-08947-7.
9
Seven critical challenges in synthetic one-carbon assimilation and their potential solutions.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf011.
10
Metabolic growth-coupling strategies for enzyme selection systems.
Metab Eng Commun. 2025 Feb 12;20:e00257. doi: 10.1016/j.mec.2025.e00257. eCollection 2025 Jun.

本文引用的文献

1
Overcoming genetic heterogeneity in industrial fermentations.
Nat Biotechnol. 2019 Aug;37(8):869-876. doi: 10.1038/s41587-019-0171-6. Epub 2019 Jul 8.
2
Evolutionary Approaches for Engineering Industrially Relevant Phenotypes in Bacterial Cell Factories.
Biotechnol J. 2019 Sep;14(9):e1800439. doi: 10.1002/biot.201800439. Epub 2019 Jun 12.
3
Enzyme promiscuity shapes adaptation to novel growth substrates.
Mol Syst Biol. 2019 Apr 8;15(4):e8462. doi: 10.15252/msb.20188462.
4
OptCouple: Joint simulation of gene knockouts, insertions and medium modifications for prediction of growth-coupled strain designs.
Metab Eng Commun. 2019 Mar 16;8:e00087. doi: 10.1016/j.mec.2019.e00087. eCollection 2019 Jun.
5
Evolutionary engineering of Corynebacterium glutamicum.
Biotechnol J. 2019 Sep;14(9):e1800444. doi: 10.1002/biot.201800444. Epub 2019 Jun 7.
6
Experimental Evolution as a Tool to Investigate Natural Processes and Molecular Functions.
Trends Microbiol. 2019 Jul;27(7):623-634. doi: 10.1016/j.tim.2019.02.003. Epub 2019 Mar 23.
7
Coupling S-adenosylmethionine-dependent methylation to growth: Design and uses.
PLoS Biol. 2019 Mar 11;17(3):e2007050. doi: 10.1371/journal.pbio.2007050. eCollection 2019 Mar.
8
The genetic basis for adaptation of model-designed syntrophic co-cultures.
PLoS Comput Biol. 2019 Mar 1;15(3):e1006213. doi: 10.1371/journal.pcbi.1006213. eCollection 2019 Mar.
9
Adaptive laboratory evolution of a genome-reduced Escherichia coli.
Nat Commun. 2019 Feb 25;10(1):935. doi: 10.1038/s41467-019-08888-6.
10
Linking a mutation to survival in wild mice.
Science. 2019 Feb 1;363(6426):499-504. doi: 10.1126/science.aav3824. Epub 2019 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验