Suppr超能文献

DNA微阵列归一化方法可以消除二维差异凝胶电泳结果的差异蛋白质表达分析中的偏差。

DNA microarray normalization methods can remove bias from differential protein expression analysis of 2D difference gel electrophoresis results.

作者信息

Kreil David P, Karp Natasha A, Lilley Kathryn S

机构信息

Department of Genetics/Inference Group (Cavendish Laboratory), University of Cambridge, Cambridge, UK.

出版信息

Bioinformatics. 2004 Sep 1;20(13):2026-34. doi: 10.1093/bioinformatics/bth193. Epub 2004 Mar 25.

Abstract

MOTIVATION

Two-dimensional Difference Gel Electrophoresis (DIGE) measures expression differences for thousands of proteins in parallel. In contrast to DNA microarray analysis, however, there have been few systematic studies on the validity of differential protein expression analysis, and the effects of normalization methods have not yet been investigated. To address this need, we assessed a series of same-same comparisons, evaluating how random experimental variance influenced differential expression analysis.

RESULTS

The strong fluctuations observed were reflected in large discrepancies between the distributions of the spot intensities for different gels. Correct normalization for pooling of multiple gels for analysis is, therefore, essential. We show that both dye-specific background levels and the differences in scale of the spot intensity distributions must be accounted for. A variance stabilizing transform that had been developed for DNA microarray analysis combined with a robust Z-score allowed the determination of gel-independent signal thresholds based on the empirical distributions from same-same comparisons. In contrast, similar thresholds holding up to cross-validation could not be proposed for data normalized using methods established in the field of proteomics.

AVAILABILITY

Software is available on request from the authors.

SUPPLEMENTARY INFORMATION

There is supplementary material available online at http://www.flychip.org.uk/kreil/pub/2dgels/

摘要

动机

二维差异凝胶电泳(DIGE)可并行测量数千种蛋白质的表达差异。然而,与DNA微阵列分析不同,关于差异蛋白质表达分析的有效性几乎没有系统研究,并且尚未研究归一化方法的效果。为满足这一需求,我们评估了一系列相同样本比较,以评估随机实验方差如何影响差异表达分析。

结果

观察到的强烈波动反映在不同凝胶上斑点强度分布之间的巨大差异中。因此,对用于分析的多个凝胶进行正确归一化至关重要。我们表明,必须同时考虑染料特异性背景水平和斑点强度分布尺度的差异。为DNA微阵列分析开发的方差稳定变换与稳健的Z分数相结合,使得能够基于相同样本比较的经验分布确定与凝胶无关的信号阈值。相比之下,对于使用蛋白质组学领域建立的方法归一化的数据,无法提出适用于交叉验证的类似阈值。

可用性

可向作者索取软件。

补充信息

可在http://www.flychip.org.uk/kreil/pub/2dgels/在线获取补充材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验