Suppr超能文献

如何从基因芯片数据中获得最大收益:来自反向基因组学的建议。

How to get the most from microarray data: advice from reverse genomics.

机构信息

Department of Genitourinary Medical Oncology, Unit 1374, The University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Houston, TX 77030-3721, USA.

出版信息

BMC Genomics. 2014 Mar 21;15:223. doi: 10.1186/1471-2164-15-223.

Abstract

BACKGROUND

Whole-genome profiling of gene expression is a powerful tool for identifying cancer-associated genes. Genes differentially expressed between normal and tumorous tissues are usually considered to be cancer associated. We recently demonstrated that the analysis of interindividual variation in gene expression can be useful for identifying cancer associated genes. The goal of this study was to identify the best microarray data-derived predictor of known cancer associated genes.

RESULTS

We found that the traditional approach of identifying cancer genes--identifying differentially expressed genes--is not very efficient. The analysis of interindividual variation of gene expression in tumor samples identifies cancer-associated genes more effectively. The results were consistent across 4 major types of cancer: breast, colorectal, lung, and prostate. We used recently reported cancer-associated genes (2011-2012) for validation and found that novel cancer-associated genes can be best identified by elevated variance of the gene expression in tumor samples.

CONCLUSIONS

The observation that the high interindividual variation of gene expression in tumor tissues is the best predictor of cancer-associated genes is likely a result of tumor heterogeneity on gene level. Computer simulation demonstrates that in the case of heterogeneity, an assessment of variance in tumors provides a better identification of cancer genes than does the comparison of the expression in normal and tumor tissues. Our results thus challenge the current paradigm that comparing the mean expression between normal and tumorous tissues is the best approach to identifying cancer-associated genes; we found that the high interindividual variation in expression is a better approach, and that using variation would improve our chances of identifying cancer-associated genes.

摘要

背景

全基因组基因表达谱分析是一种识别癌症相关基因的强大工具。在正常组织和肿瘤组织之间表达差异的基因通常被认为与癌症有关。我们最近证明,分析基因表达的个体间变异性可用于识别与癌症相关的基因。本研究的目的是确定最佳的微阵列数据衍生预测因子,用于识别已知的癌症相关基因。

结果

我们发现,传统的识别癌症基因的方法——识别差异表达的基因——效率不高。分析肿瘤样本中基因表达的个体间变异性可以更有效地识别与癌症相关的基因。这一结果在四种主要类型的癌症(乳腺癌、结直肠癌、肺癌和前列腺癌)中是一致的。我们使用最近报道的癌症相关基因(2011-2012 年)进行验证,发现肿瘤样本中基因表达的方差升高可最好地识别新的癌症相关基因。

结论

观察到肿瘤组织中基因表达的个体间高度变异性是癌症相关基因的最佳预测因子,这很可能是基因水平上肿瘤异质性的结果。计算机模拟表明,在存在异质性的情况下,评估肿瘤中的方差比比较正常组织和肿瘤组织中的表达能更好地识别癌症基因。因此,我们的结果挑战了目前的范式,即比较正常和肿瘤组织之间的平均表达是识别癌症相关基因的最佳方法;我们发现个体间表达的高度变异性是一种更好的方法,使用变异性将提高我们识别癌症相关基因的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验