Hsieh Meng-Da, Zellers Edward T
Center for Wireless Integrated Microsystems, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
Anal Chem. 2004 Apr 1;76(7):1885-95. doi: 10.1021/ac035294w.
The "limit of recognition" (LOR) has been defined as the minimum concentration at which reliable individual vapor recognition can be achieved with a multisensor array, and methodology for determining the LORs of individual vapors probabilistically on the basis of sensor array response patterns has been reported. This article explores the problems of defining and evaluating LORs for vapor mixtures in terms of the absolute and relative component vapor concentrations, where the mixture must be discriminated from those component vapors and from the subset of possible lower-order component mixtures. Monte Carlo simulations and principal components regression analyses of an extant database of calibrated responses to a set of 16 vapors from an array of 6 diverse polymer-coated surface acoustic wave sensors are used to illustrate the approach and to examine trends in LOR values among the 120 possible binary mixtures and 560 possible ternary mixtures in the data set. At concentrations exceeding the LOD, 89% of the binary mixtures could be reliably recognized (<5% error) over some composite concentration range, while only 3% of the ternary mixtures could be recognized. Most binary mixtures could be recognized only if the constituent vapor relative concentration ratio, defined in terms of multiples of the LOD for each vapor, was < or =20. Correlations with the Euclidean distance(s) separating the normalized constituent vapor response vectors allow reasonably accurate predictions of the limiting recognizable mixture composition ranges for binary and ternary cases. Results are considered in the context of using microsensor arrays for vapor detection and recognition in microanalytical systems.
“识别极限”(LOR)被定义为使用多传感器阵列能够实现可靠的单一蒸汽识别的最低浓度,并且已经报道了基于传感器阵列响应模式概率性确定单一蒸汽LOR的方法。本文从绝对和相对组分蒸汽浓度方面探讨了定义和评估蒸汽混合物LOR的问题,其中混合物必须与那些组分蒸汽以及可能的低阶组分混合物子集区分开来。利用对来自6种不同聚合物涂层表面声波传感器阵列的一组16种蒸汽的校准响应的现有数据库进行蒙特卡罗模拟和主成分回归分析,以说明该方法并检查数据集中120种可能的二元混合物和560种可能的三元混合物中LOR值的趋势。在浓度超过检测限(LOD)时,89%的二元混合物在某些复合浓度范围内能够被可靠识别(误差<5%),而只有3%的三元混合物能够被识别。大多数二元混合物只有在以每种蒸汽的LOD倍数定义的组分蒸汽相对浓度比≤20时才能被识别。与分离归一化组分蒸汽响应向量的欧几里得距离的相关性允许对二元和三元情况下的极限可识别混合物组成范围进行合理准确的预测。在微分析系统中使用微传感器阵列进行蒸汽检测和识别的背景下考虑了结果。