Suppr超能文献

利用基于吸附的传感器阵列的时空响应信息来识别和量化分析物混合物的成分。

Use of spatiotemporal response information from sorption-based sensor arrays to identify and quantify the composition of analyte mixtures.

作者信息

Woodka Marc D, Brunschwig Bruce S, Lewis Nathan S

机构信息

Beckman Institute and Kavli Nanoscience Institute, 210 Noyes Laboratory, 127-72, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.

出版信息

Langmuir. 2007 Dec 18;23(26):13232-41. doi: 10.1021/la7026708. Epub 2007 Nov 15.

Abstract

Linear sensor arrays made from small molecule/carbon black composite chemiresistors placed in a low-headspace volume chamber, with vapor delivered at low flow rates, allowed for the extraction of new chemical information that significantly increased the ability of the sensor arrays to identify vapor mixture components and to quantify their concentrations. Each sensor sorbed vapors from the gas stream and, thereby, as in gas chromatography, separated species having high vapor pressures from species having low vapor pressures. Instead of producing only equilibrium-based sensor responses that were representative of the thermodynamic equilibrium partitioning of analyte between each sensor and the initial vapor phase, the sensor responses varied depending on the position of the sensor in the chamber and the time since the beginning of the analyte exposure. The concomitant spatiotemporal (ST) sensor array response therefore provided information that was a function of time, as well as of the position of the sensor in the chamber. The responses to pure analytes and to multicomponent analyte mixtures comprised of hexane, decane, ethyl acetate, chlorobenzene, ethanol, and/or butanol were recorded along each of the sensor arrays. Use of a non-negative least-squares (NNLS) method for analysis of the ST data enabled the correct identification and quantification of the composition of two-, three-, four-, and five-component mixtures from arrays using only four chemically different sorbent films. In contrast, when traditional time- and position-independent sensor response information was used, these same mixtures could not be identified or quantified robustly. The work has also demonstrated that, for ST data, NNLS yielded significantly better results than analyses using extended disjoint principal components modeling. The ability to correctly identify and quantify constituent components of vapor mixtures through the use of such ST information significantly expands the capabilities of such broadly cross-reactive arrays of sensors.

摘要

由小分子/炭黑复合化学电阻制成的线性传感器阵列放置在低顶空容积腔室中,以低流速输送蒸汽,这样能够提取新的化学信息,显著提高了传感器阵列识别蒸汽混合物成分并对其浓度进行定量的能力。每个传感器从气流中吸附蒸汽,从而如同在气相色谱中一样,将高蒸汽压的物质与低蒸汽压的物质分离。传感器的响应并非仅产生基于平衡的、代表分析物在每个传感器与初始蒸汽相之间热力学平衡分配的响应,而是取决于传感器在腔室中的位置以及自分析物暴露开始后的时间。因此,伴随的时空(ST)传感器阵列响应提供了作为时间以及传感器在腔室中位置函数的信息。沿着每个传感器阵列记录了对纯分析物以及由己烷、癸烷、乙酸乙酯、氯苯、乙醇和/或丁醇组成的多组分分析物混合物的响应。使用非负最小二乘法(NNLS)分析ST数据能够仅使用四种化学性质不同的吸附膜从阵列中正确识别和定量二组分、三组分、四组分和五组分混合物的组成。相比之下,当使用传统的与时间和位置无关的传感器响应信息时,这些相同的混合物无法可靠地识别或定量。这项工作还表明,对于ST数据,NNLS比使用扩展不相交主成分建模的分析产生的结果要好得多。通过使用此类ST信息正确识别和定量蒸汽混合物组成成分的能力显著扩展了这种广泛交叉反应的传感器阵列的功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验