Suppr超能文献

回声定位中自然纹理的分类。

Classification of natural textures in echolocation.

作者信息

Grunwald Jan-Eric, Schörnich Sven, Wiegrebe Lutz

机构信息

Department Biologie II der Ludwig-Maximilians-Universität, Luisenstrasse 14, D-80333 Munich, Germany.

出版信息

Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5670-4. doi: 10.1073/pnas.0308029101. Epub 2004 Apr 1.

Abstract

Through echolocation, a bat can perceive not only the position of an object in the dark; it can also recognize its 3D structure. A tree, however, is a very complex object; it has thousands of reflective surfaces that result in a chaotic acoustic image of the tree. Technically, the acoustic image of an object is its impulse response (IR), i.e., the sum of the reflections recorded when the object is ensonified with an acoustic impulse. The extraction of the acoustic IR from the ultrasonic echo and the detailed IR analysis underlies the bats' extraordinary object-recognition capabilities. Here, a phantom-object playback experiment is developed to demonstrate that the bat Phyllostomus discolor can evaluate a statistical property of chaotic IRs, the IR roughness. The IRs of the phantom objects consisted of up to 4,000 stochastically distributed reflections. It is shown that P. discolor spontaneously classifies echoes generated with these IRs according to IR roughness. This capability enables the bats to evaluate complex natural textures, such as foliage types, in a meaningful manner. The present behavioral results and their simulations in a computer model of the bats' ascending auditory system indicate the involvement of modulation-sensitive neurons in echo analysis.

摘要

通过回声定位,蝙蝠不仅能在黑暗中感知物体的位置,还能识别其三维结构。然而,一棵树是一个非常复杂的物体,它有成千上万个反射面,这导致了树的声学图像杂乱无章。从技术上讲,物体的声学图像就是其脉冲响应(IR),即当用声脉冲照射物体时记录的反射之和。从超声回波中提取声学脉冲响应并进行详细的脉冲响应分析是蝙蝠具有非凡物体识别能力的基础。在此,开展了一个虚拟物体回放实验,以证明杂色叶口蝠能够评估杂乱脉冲响应的一种统计特性——脉冲响应粗糙度。虚拟物体的脉冲响应由多达4000个随机分布的反射组成。结果表明,杂色叶口蝠会根据脉冲响应粗糙度自发地对由这些脉冲响应产生的回声进行分类。这种能力使蝙蝠能够以有意义的方式评估复杂的自然纹理,如树叶类型。目前的行为结果及其在蝙蝠听觉上行系统计算机模型中的模拟表明,调制敏感神经元参与了回声分析。

相似文献

1
Classification of natural textures in echolocation.回声定位中自然纹理的分类。
Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5670-4. doi: 10.1073/pnas.0308029101. Epub 2004 Apr 1.
5
An autocorrelation model of bat sonar.蝙蝠声纳的自相关模型。
Biol Cybern. 2008 Jun;98(6):587-95. doi: 10.1007/s00422-008-0216-2. Epub 2008 May 20.
7
Modelling simultaneous echo waveform reconstruction and localization in bats.蝙蝠回声波形重建与定位的同步建模
Biosystems. 2010 May;100(2):94-100. doi: 10.1016/j.biosystems.2010.01.006. Epub 2010 Feb 10.

引用本文的文献

1
A validation study for a bat-inspired sonar sensing simulator.一种基于蝙蝠启发的声纳传感模拟器的验证研究。
PLoS One. 2023 Jan 20;18(1):e0280631. doi: 10.1371/journal.pone.0280631. eCollection 2023.
3
A researcher's guide to the comparative assessment of vocal production learning.研究者指南:嗓音产生学习的比较评估
Philos Trans R Soc Lond B Biol Sci. 2021 Oct 25;376(1836):20200237. doi: 10.1098/rstb.2020.0237. Epub 2021 Sep 6.
5
A comprehensive computational model of animal biosonar signal processing.动物生物声纳信号处理的综合计算模型。
PLoS Comput Biol. 2021 Feb 17;17(2):e1008677. doi: 10.1371/journal.pcbi.1008677. eCollection 2021 Feb.
9
Vocal production learning in the pale spear-nosed bat, .古棱齿象蝠发声学习的研究。
Biol Lett. 2020 Apr;16(4):20190928. doi: 10.1098/rsbl.2019.0928. Epub 2020 Apr 15.
10

本文引用的文献

5
The effect of temporal structure on rustling-sound detection in the gleaning bat, Megaderma lyra.时间结构对食虫蝙蝠大耳假吸血蝠探测沙沙声的影响。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 May;189(5):337-46. doi: 10.1007/s00359-003-0407-1. Epub 2003 Mar 29.
7
Characterizing frequency selectivity for envelope fluctuations.表征包络波动的频率选择性。
J Acoust Soc Am. 2000 Sep;108(3 Pt 1):1181-96. doi: 10.1121/1.1288665.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验