Grunwald Jan-Eric, Schörnich Sven, Wiegrebe Lutz
Department Biologie II der Ludwig-Maximilians-Universität, Luisenstrasse 14, D-80333 Munich, Germany.
Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5670-4. doi: 10.1073/pnas.0308029101. Epub 2004 Apr 1.
Through echolocation, a bat can perceive not only the position of an object in the dark; it can also recognize its 3D structure. A tree, however, is a very complex object; it has thousands of reflective surfaces that result in a chaotic acoustic image of the tree. Technically, the acoustic image of an object is its impulse response (IR), i.e., the sum of the reflections recorded when the object is ensonified with an acoustic impulse. The extraction of the acoustic IR from the ultrasonic echo and the detailed IR analysis underlies the bats' extraordinary object-recognition capabilities. Here, a phantom-object playback experiment is developed to demonstrate that the bat Phyllostomus discolor can evaluate a statistical property of chaotic IRs, the IR roughness. The IRs of the phantom objects consisted of up to 4,000 stochastically distributed reflections. It is shown that P. discolor spontaneously classifies echoes generated with these IRs according to IR roughness. This capability enables the bats to evaluate complex natural textures, such as foliage types, in a meaningful manner. The present behavioral results and their simulations in a computer model of the bats' ascending auditory system indicate the involvement of modulation-sensitive neurons in echo analysis.
通过回声定位,蝙蝠不仅能在黑暗中感知物体的位置,还能识别其三维结构。然而,一棵树是一个非常复杂的物体,它有成千上万个反射面,这导致了树的声学图像杂乱无章。从技术上讲,物体的声学图像就是其脉冲响应(IR),即当用声脉冲照射物体时记录的反射之和。从超声回波中提取声学脉冲响应并进行详细的脉冲响应分析是蝙蝠具有非凡物体识别能力的基础。在此,开展了一个虚拟物体回放实验,以证明杂色叶口蝠能够评估杂乱脉冲响应的一种统计特性——脉冲响应粗糙度。虚拟物体的脉冲响应由多达4000个随机分布的反射组成。结果表明,杂色叶口蝠会根据脉冲响应粗糙度自发地对由这些脉冲响应产生的回声进行分类。这种能力使蝙蝠能够以有意义的方式评估复杂的自然纹理,如树叶类型。目前的行为结果及其在蝙蝠听觉上行系统计算机模型中的模拟表明,调制敏感神经元参与了回声分析。