Suppr超能文献

用于车辆控制与同步定位与地图构建的脉冲回波雷达仿真

Simulation of Pulse-Echo Radar for Vehicle Control and SLAM.

作者信息

Schouten Girmi, Jansen Wouter, Steckel Jan

机构信息

CoSys-Lab, Faculty of Applied Engineering, University of Antwerp, 2020 Antwerpen, Belgium.

Flanders Make Strategic Research Centre, 3920 Lommel, Belgium.

出版信息

Sensors (Basel). 2021 Jan 13;21(2):523. doi: 10.3390/s21020523.

Abstract

Pulse-echo sensing is the driving principle behind biological echolocation as well as biologically-inspired sonar and radar sensors. In biological echolocation, a single emitter sends a self-generated pulse into the environment which reflects off objects. A fraction of these reflections are captured by two receivers as echoes, from which information about the objects, such as their position in 3D space, can be deduced by means of timing, intensity and spectral analysis. This is opposed to frequency-modulated continuous-wave radar, which analyses the shift in frequency of the returning signal to determine distance, and requires an array of antenna to obtain directional information. In this work, we present a novel simulator which can generate synthetic pulse-echo measurements for a simulated sensor in a virtual environment. The simulation is implemented by replicating the relevant physical processes underlying the pulse-echo sensing modality, while achieving high performance at update rates above 50 Hz. The system is built to perform design space exploration of sensor hardware and software, with the goals of rapid prototyping and preliminary safety testing in mind. We demonstrate the validity of the simulator by replicating real-world experiments from previous work. In the first case, a subsumption architecture vehicle controller is set to navigate an unknown environment using the virtual sensor. We see the same trajectory pattern emerge in the simulated environment rebuilt from the real experiment, as well as similar activation times for the high-priority behaviors (±1.9%), and low-priority behaviors (±0.2%). In a second experiment, the simulated signals are used as input to a biologically-inspired direct simultaneous mapping and localization (SLAM) algorithm. Using only path integration, 83% of the positional errors are larger than 10 m, while for the SLAM algorithm 95% of the errors are smaller than 3.2  m. Additionally, we perform design space exploration using the simulator. By creating a synthetic radiation pattern with increased spatiospectral variance, we are able to reduce the average localization error of the system by 11%. From these results, we conclude that the simulation is sufficiently accurate to be of use in developing vehicle controllers and SLAM algorithms for pulse-echo radar sensors.

摘要

脉冲回波传感是生物回声定位以及受生物启发的声纳和雷达传感器背后的驱动原理。在生物回声定位中,单个发射器向环境中发送自身产生的脉冲,该脉冲从物体上反射回来。这些反射中的一部分被两个接收器作为回波捕获,通过时间、强度和频谱分析可以从中推断出有关物体的信息,例如它们在三维空间中的位置。这与调频连续波雷达不同,调频连续波雷达通过分析返回信号的频率偏移来确定距离,并且需要天线阵列来获取方向信息。在这项工作中,我们提出了一种新颖的模拟器,它可以在虚拟环境中为模拟传感器生成合成脉冲回波测量值。该模拟通过复制脉冲回波传感模式背后的相关物理过程来实现,同时在高于50Hz的更新速率下实现高性能。该系统的构建旨在进行传感器硬件和软件的设计空间探索,同时考虑到快速原型制作和初步安全测试的目标。我们通过复制先前工作中的真实世界实验来证明模拟器的有效性。在第一个案例中,一个包容式架构车辆控制器被设置为使用虚拟传感器在未知环境中导航。我们在从真实实验重建的模拟环境中看到了相同的轨迹模式,以及高优先级行为(±1.9%)和低优先级行为(±0.2%)的类似激活时间。在第二个实验中,模拟信号被用作受生物启发的直接同步映射和定位(SLAM)算法的输入。仅使用路径积分时,83%的位置误差大于10米,而对于SLAM算法,95%的误差小于3.2米。此外,我们使用模拟器进行设计空间探索。通过创建具有增加的空间光谱方差的合成辐射模式,我们能够将系统的平均定位误差降低11%。从这些结果中,我们得出结论,该模拟足够准确,可用于开发脉冲回波雷达传感器的车辆控制器和SLAM算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验