Suppr超能文献

通过基于网络的基序采样器预测蛋白质-肽相互作用。

Predicting protein-peptide interactions via a network-based motif sampler.

作者信息

Reiss David J, Schwikowski Benno

机构信息

Institute for Systems Biology, Seattle, WA 98103-8904, USA.

出版信息

Bioinformatics. 2004 Aug 4;20 Suppl 1:i274-82. doi: 10.1093/bioinformatics/bth922.

Abstract

MOTIVATION

Many protein-protein interactions are mediated by peptide recognition modules (PRMs), compact domains that bind to short peptides, and play a critical role in a wide array of biological processes. Recent experimental protein interaction data provide us with an opportunity to examine whether we may explain, or even predict their interactions by computational sequence analysis. Such a question was recently posed by the use of random peptide screens to characterize the ligands of one such PRM, the SH3 domain.

RESULTS

We describe a general computational procedure for identifying the ligand peptides of PRMs by combining protein sequence information and observed physical interactions into a simple probabilistic model and from it derive an interaction-mediated de novo motif-finding framework. Using a recent all-versus-all yeast two-hybrid SH3 domain interaction network, we demonstrate that our technique can be used to derive independent predictions of interactions mediated by SH3 domains. We show that only when sequence information is combined with such all versus all protein interaction datasets, are we capable of identifying motifs with sufficient sensitivity and specificity for predicting interactions. The algorithm is general so that it may be applied to other PRM domains (e.g. SH2, WW, PDZ).

AVAILABILITY

The Netmotsa software and source code, as part of a general Gibbs motif sampling library, are available at http://sf.net/projects/netmotsa

摘要

动机

许多蛋白质-蛋白质相互作用是由肽识别模块(PRM)介导的,PRM是与短肽结合的紧凑结构域,在广泛的生物过程中起关键作用。最近的实验性蛋白质相互作用数据为我们提供了一个机会,来检验我们是否可以通过计算序列分析来解释甚至预测它们的相互作用。最近通过使用随机肽筛选来表征一种这样的PRM即SH3结构域的配体,提出了这样一个问题。

结果

我们描述了一种通用的计算程序,通过将蛋白质序列信息和观察到的物理相互作用组合到一个简单的概率模型中,来识别PRM的配体肽,并从中推导出一个由相互作用介导的从头基序发现框架。使用最近的全对全酵母双杂交SH3结构域相互作用网络,我们证明我们的技术可用于推导由SH3结构域介导的相互作用的独立预测。我们表明,只有当序列信息与这种全对全蛋白质相互作用数据集相结合时,我们才有能力识别出具有足够灵敏度和特异性以预测相互作用的基序。该算法具有通用性,因此可应用于其他PRM结构域(例如SH2、WW、PDZ)。

可用性

Netmotsa软件和源代码作为通用吉布斯基序采样库的一部分,可在http://sf.net/projects/netmotsa获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验