Maheshwari Surabhi, Brylinski Michal
Brief Bioinform. 2015 Nov;16(6):1025-34. doi: 10.1093/bib/bbv009. Epub 2015 Mar 21.
It has been more than a decade since the completion of the Human Genome Project that provided us with a complete list of human proteins. The next obvious task is to figure out how various parts interact with each other. On that account, we review 10 methods for protein interface prediction, which are freely available as web servers. In addition, we comparatively evaluate their performance on a common data set comprising different quality target structures. We find that using experimental structures and high-quality homology models, structure-based methods outperform those using only protein sequences, with global template-based approaches providing the best performance. For moderate-quality models, sequence-based methods often perform better than those structure-based techniques that rely on fine atomic details. We note that post-processing protocols implemented in several methods quantitatively improve the results only for experimental structures, suggesting that these procedures should be tuned up for computer-generated models. Finally, we anticipate that advanced meta-prediction protocols are likely to enhance interface residue prediction. Notwithstanding further improvements, easily accessible web servers already provide the scientific community with convenient resources for the identification of protein-protein interaction sites.
人类基因组计划完成至今已有十多年,该计划为我们提供了人类蛋白质的完整列表。接下来的一项显而易见的任务是弄清楚各个部分是如何相互作用的。基于此,我们综述了10种蛋白质界面预测方法,这些方法都可以作为网络服务器免费获取。此外,我们在一个包含不同质量目标结构的通用数据集上对它们的性能进行了比较评估。我们发现,使用实验结构和高质量同源模型时,基于结构的方法优于仅使用蛋白质序列的方法,其中基于全局模板的方法性能最佳。对于中等质量的模型,基于序列的方法通常比那些依赖精细原子细节的基于结构的技术表现更好。我们注意到,几种方法中实施的后处理协议仅对实验结构定量地改善了结果,这表明这些程序应针对计算机生成的模型进行调整。最后,我们预计先进的元预测协议可能会增强界面残基预测。尽管还有进一步的改进,但易于访问的网络服务器已经为科学界提供了用于识别蛋白质-蛋白质相互作用位点的便利资源。