Suppr超能文献

用于双着丝粒染色体的自适应分类器。

Adaptive classifiers for dicentric chromosomes.

作者信息

Piper J, Sprey J

机构信息

MRC Human Genetics Unit, Edinburgh, UK.

出版信息

J Radiat Res. 1992 Mar;33 Suppl:159-70. doi: 10.1269/jrr.33.supplement_159.

Abstract

Classification of dicentric chromosomes in a practical automatic screening system comprises three stages. The first generates plausible centromere candidates from each chromosome in an automatically segmented metaphase, and uses contextual knowledge to generate distributions of "probably true" and "probably false" centromeres, thus adapting to the conditions within a particular metaphase. The second stage classifier uses these distributions to re-classify the candidates as centromeres or non-centromeres. From this classification, likely dicentrics are found by counting centromeres; a third classifier attempts to reject false positives among the likely dicentric chromosomes, by comparing the feature values of the proposed centromeres of a chromosome and rejecting chromosomes for which these values do not satisfy certain similarity criteria. The second stage classifier may be a simple box classifier, or may use a variety of parametric Bayesian methods. The performance of these alternatives has been tested both on reference data sets comprising about 600 metaphases, and on larger data sets when embedded in a practical fully automatic dicentric pre-screening system. When operating parameters were such that a similar number of true positives were found by both classifiers, the Bayesian classifier produced about half as many false positive errors as the box classifier, with the final false positive rate being in the region of one candidate dicentric chromosome in every four cells.

摘要

在一个实用的自动筛选系统中,双着丝粒染色体的分类包括三个阶段。第一阶段从自动分割的中期每个染色体中生成似是而非的着丝粒候选物,并利用上下文知识生成“可能为真”和“可能为假”着丝粒的分布,从而适应特定中期内的条件。第二阶段分类器利用这些分布将候选物重新分类为着丝粒或非着丝粒。通过对着丝粒进行计数,从这种分类中找出可能的双着丝粒;第三个分类器通过比较一条染色体提议的着丝粒的特征值,并拒绝那些这些值不满足某些相似性标准的染色体,试图在可能的双着丝粒染色体中排除假阳性。第二阶段分类器可以是一个简单的盒式分类器,也可以使用各种参数贝叶斯方法。这些替代方法的性能已经在包含约600个中期的参考数据集上以及嵌入实用的全自动双着丝粒预筛选系统时在更大的数据集上进行了测试。当操作参数使得两个分类器发现的真阳性数量相似时,贝叶斯分类器产生的假阳性错误约为盒式分类器的一半,最终的假阳性率约为每四个细胞中有一个候选双着丝粒染色体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验