Wagner Andreas
University of New Mexico, Department of Biology, Albuquerque, NM 817131-1091, USA.
J Comput Biol. 2004;11(1):53-60. doi: 10.1089/106652704773416885.
I present an algorithm that determines the longest path between every gene pair in an arbitrarily large genetic network from large scale gene perturbation data. The algorithm's computational complexity is O(nk(2)), where n is the number of genes in the network and k is the average number of genes affected by a genetic perturbation. The algorithm is able to distinguish a large fraction of direct regulatory interactions from indirect interactions, even if the accuracy of its input data is substantially compromised.
我提出了一种算法,该算法可根据大规模基因扰动数据确定任意大型遗传网络中每对基因之间的最长路径。该算法的计算复杂度为O(nk(2)),其中n是网络中的基因数量,k是受基因扰动影响的基因的平均数量。即使其输入数据的准确性受到很大影响,该算法也能够从间接相互作用中区分出很大一部分直接调控相互作用。