Laubenbacher Reinhard, Stigler Brandilyn
Virginia Bioinformatics Institute at Virginia Tech, 1880 Pratt Drive, Building XV, Blacksburg, VA 24061, USA.
J Theor Biol. 2004 Aug 21;229(4):523-37. doi: 10.1016/j.jtbi.2004.04.037.
This paper proposes a new method to reverse engineer gene regulatory networks from experimental data. The modeling framework used is time-discrete deterministic dynamical systems, with a finite set of states for each of the variables. The simplest examples of such models are Boolean networks, in which variables have only two possible states. The use of a larger number of possible states allows a finer discretization of experimental data and more than one possible mode of action for the variables, depending on threshold values. Furthermore, with a suitable choice of state set, one can employ powerful tools from computational algebra, that underlie the reverse-engineering algorithm, avoiding costly enumeration strategies. To perform well, the algorithm requires wildtype together with perturbation time courses. This makes it suitable for small to meso-scale networks rather than networks on a genome-wide scale. An analysis of the complexity of the algorithm is performed. The algorithm is validated on a recently published Boolean network model of segment polarity development in Drosophila melanogaster.
本文提出了一种从实验数据逆向工程基因调控网络的新方法。所使用的建模框架是时间离散确定性动力系统,每个变量都有一组有限的状态。此类模型最简单的例子是布尔网络,其中变量只有两种可能的状态。使用更多可能的状态可以对实验数据进行更精细的离散化,并且根据阈值,变量有不止一种可能的作用模式。此外,通过适当选择状态集,可以采用计算代数中的强大工具,这些工具是逆向工程算法的基础,避免了代价高昂的枚举策略。为了表现良好,该算法需要野生型以及扰动时间进程。这使得它适用于中小规模的网络,而不是全基因组规模的网络。对该算法的复杂度进行了分析。该算法在最近发表的果蝇节段极性发育的布尔网络模型上得到了验证。