Markowetz Florian, Spang Rainer
Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany.
BMC Bioinformatics. 2007 Sep 27;8 Suppl 6(Suppl 6):S5. doi: 10.1186/1471-2105-8-S6-S5.
In this review we give an overview of computational and statistical methods to reconstruct cellular networks. Although this area of research is vast and fast developing, we show that most currently used methods can be organized by a few key concepts. The first part of the review deals with conditional independence models including Gaussian graphical models and Bayesian networks. The second part discusses probabilistic and graph-based methods for data from experimental interventions and perturbations.
在本综述中,我们概述了用于重建细胞网络的计算和统计方法。尽管这一研究领域广阔且发展迅速,但我们表明,目前大多数使用的方法都可以按照几个关键概念进行组织。综述的第一部分涉及条件独立模型,包括高斯图形模型和贝叶斯网络。第二部分讨论了用于来自实验干预和扰动数据的概率和基于图形的方法。