Frank Eibe, Hall Mark, Trigg Len, Holmes Geoffrey, Witten Ian H
Department of Computer Science, University of Waikato, Private Bag 3105, Hamilton, New Zealand.
Bioinformatics. 2004 Oct 12;20(15):2479-81. doi: 10.1093/bioinformatics/bth261. Epub 2004 Apr 8.
The Weka machine learning workbench provides a general-purpose environment for automatic classification, regression, clustering and feature selection-common data mining problems in bioinformatics research. It contains an extensive collection of machine learning algorithms and data pre-processing methods complemented by graphical user interfaces for data exploration and the experimental comparison of different machine learning techniques on the same problem. Weka can process data given in the form of a single relational table. Its main objectives are to (a) assist users in extracting useful information from data and (b) enable them to easily identify a suitable algorithm for generating an accurate predictive model from it.
Weka机器学习工作台为自动分类、回归、聚类和特征选择(生物信息学研究中常见的数据挖掘问题)提供了一个通用环境。它包含大量机器学习算法和数据预处理方法,并辅以图形用户界面,用于数据探索以及针对同一问题对不同机器学习技术进行实验比较。Weka可以处理以单个关系表形式给出的数据。其主要目标是:(a)帮助用户从数据中提取有用信息;(b)使他们能够轻松识别一种合适的算法,以便从中生成准确的预测模型。