Manczak Maria, Park Byung S, Jung Youngsin, Reddy P Hemachandra
Neurogenetics Laboratory, Neurological Sciences Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, USA.
Neuromolecular Med. 2004;5(2):147-62. doi: 10.1385/NMM:5:2:147.
In Alzheimer's disease (AD) pathogenesis, increasing evidence implicates mitochondrial dysfunction resulting from molecular defects in oxidative phosphorylation (OXPHOS). The objective of the present study was to determine the role of mRNA expression of mitochondrial genes responsible for OXPHOS in brain specimens from early AD and definite AD patients. In the present article, using quantitative real-time polymerase chain reaction (PCR) techniques, we studied mRNA expression of 11 mitochondrial-encoded genes in early AD patients (n = 6), definite AD patients (n = 6), and control subjects (n = 6). Using immunofluorescence techniques, we determined differentially expressed mitochondrial genes NADH 15-kDa subunit (complex I), cytochrome oxidase subunit 1 (complex IV), and ATPase delta-subunit (complex V) in the brain sections of AD patients and control subjects. Our quantitative reverse transcription (RT)-PCR analysis revealed a downregulation of mitochondrial genes in complex I of OXPHOS in both early and definite AD brain specimens. Further, the decrease of mRNA fold changes was higher for subunit 1 compared to all other subunits studied, suggesting that subunit 1 is critical for OXPHOS. Contrary to the downregulation of genes in complex I, complexes III and IV showed increased mRNA expressions in the brain specimens of both early and definite AD patients, suggesting a great demand on energy production. Further, mitochondrial gene expression varied greatly across AD patients, suggesting that mitochondrial DNA defects may be responsible for the heterogeneity of the phenotype in AD patients. Our immunofluorescence analyses of cytochrome oxidase and of the ATPase delta-subunit suggest that only subpopulations of neurons are differentially expressed in AD brains. Our double-labeling immunofluorescence analyses of 8-hydroxyguanosine and of cytochrome oxidase suggest that only selective, overexpressed neurons with cytochrome oxidase undergo oxidative damage in AD brains. Based on these results, we propose that an increase in cytochrome oxidase gene expression might be the result of functional compensation by the surviving neurons or an early mitochondrial alteration related to increased oxidative damage.
在阿尔茨海默病(AD)的发病机制中,越来越多的证据表明,氧化磷酸化(OXPHOS)的分子缺陷会导致线粒体功能障碍。本研究的目的是确定负责OXPHOS的线粒体基因的mRNA表达在早期AD患者和确诊AD患者脑标本中的作用。在本文中,我们使用定量实时聚合酶链反应(PCR)技术,研究了11个线粒体编码基因在早期AD患者(n = 6)、确诊AD患者(n = 6)和对照受试者(n = 6)中的mRNA表达。我们使用免疫荧光技术,确定了AD患者和对照受试者脑切片中线粒体基因烟酰胺腺嘌呤二核苷酸(NADH)15 kDa亚基(复合体I)、细胞色素氧化酶亚基1(复合体IV)和ATP合酶δ亚基(复合体V)的差异表达。我们的定量逆转录(RT)-PCR分析显示,在早期和确诊AD脑标本中,OXPHOS复合体I中的线粒体基因均下调。此外,与所研究的所有其他亚基相比,亚基1的mRNA倍数变化下降更高,这表明亚基1对OXPHOS至关重要。与复合体I中基因的下调相反,复合体III和IV在早期和确诊AD患者的脑标本中mRNA表达增加,这表明对能量产生的需求很大。此外,AD患者中线粒体基因表达差异很大,这表明线粒体DNA缺陷可能是AD患者表型异质性的原因。我们对细胞色素氧化酶和ATP合酶δ亚基的免疫荧光分析表明,在AD脑中只有神经元亚群存在差异表达。我们对8-羟基鸟苷和细胞色素氧化酶的双标记免疫荧光分析表明,在AD脑中只有细胞色素氧化酶过表达的选择性神经元会发生氧化损伤。基于这些结果,我们提出细胞色素氧化酶基因表达的增加可能是存活神经元功能补偿的结果,或是与氧化损伤增加相关的早期线粒体改变。