Remppis Andrew, Pleger Sven T, Most Patrick, Lindenkamp Jan, Ehlermann Philipp, Schweda Christopher, Löffler Eva, Weichenhan Dieter, Zimmermann Wolfram, Eschenhagen Thomas, Koch Walter J, Katus Hugo A
Medizinische Klinik III, Universität Heidelberg, 69115 Heidelberg, Germany.
J Gene Med. 2004 Apr;6(4):387-94. doi: 10.1002/jgm.513.
Cardiac tissue replacement therapy, although a promising novel approach for the potential treatment of heart failure, still suffers from insufficient contractile support to the failing myocardium. Here, we explore a strategy to improve contractile properties of engineered heart tissue (EHT) by S100A1 gene transfer.
EHTs were generated from neonatal rat cardiomyocytes and transfected (MOI 10 PFU) with the S100A1 adenovirus (AdvS100A1, n = 25) while an adenovirus devoid of the S100A1 cDNA served as a control (AdvGFP, n = 30). Contractile properties of transfected EHTs were measured 7 days following gene transfer.
Western blot analysis confirmed a 8.7 +/- 3.6-fold S100A1 protein overexpression in AdvS100A1-transfected EHTs (n = 4; P < 0.01) that increased maximal isometric force (mN; AdvGFP 0.175 +/- 0.03 vs. AdvS100A1 0.47 +/- 0.06; P < 0.05) at 0.4 mmol/L extracellular calcium concentration Ca(2+). In addition, S100A1 overexpression enhanced both maximal Ca(2+)-stimulated force generation (+81%; P < 0.05) and Ca(2+)-sensitivity of EHTs (EC50% Ca(2+) mM; AdvGFP 0.33 +/- 0.04 vs. AdvS100A1 0.21 +/- 0.0022; P < 0.05). The S100A1-mediated gain in basal graft contractility was preserved throughout a series of isoproterenol interventions (10(-9) to 10(-6) M). Physiological properties of EHTs resembling intact heart preparations were preserved.
S100A1 gene transfer in EHT is feasible and augments contractile performance, while characteristic physiological features of EHT remain unchanged. Thus, specific genetic manipulation of tissue constructs prior to implantation should be part of an improved tissue replacement strategy in heart failure.
心脏组织替代疗法虽然是一种有前景的治疗心力衰竭的新方法,但仍存在对衰竭心肌收缩支持不足的问题。在此,我们探索一种通过S100A1基因转移来改善工程心脏组织(EHT)收缩特性的策略。
从新生大鼠心肌细胞生成EHT,并使用S100A1腺病毒(AdvS100A1,n = 25)进行转染(感染复数为10 PFU),而不含S100A1 cDNA的腺病毒用作对照(AdvGFP,n = 30)。在基因转移后7天测量转染的EHT的收缩特性。
蛋白质印迹分析证实AdvS100A1转染的EHT中S100A1蛋白过表达8.7±3.6倍(n = 4;P < 0.01),在细胞外钙浓度[Ca(2+)]e为0.4 mmol/L时增加了最大等长力(mN;AdvGFP为0.175±0.03,AdvS100A1为0.47±0.06;P < 0.05)。此外,S100A1过表达增强了最大钙刺激力生成(增加81%;P < 0.05)以及EHT的钙敏感性(EC50% [Ca(2+)]e mM;AdvGFP为0.33±0.04,AdvS100A1为0.21±0.0022;P < 0.05)。在一系列异丙肾上腺素干预(10(-9)至10(-6) M)过程中,S100A1介导的基础移植物收缩性增加得以保持。EHT类似完整心脏制剂的生理特性得以保留。
EHT中的S100A1基因转移是可行的,并增强了收缩性能,而EHT的特征性生理特性保持不变。因此,在植入前对组织构建体进行特定的基因操作应成为改善心力衰竭组织替代策略的一部分。