Yang Hsin-Sheng, Cho Myung-Haing, Zakowicz Halina, Hegamyer Glenn, Sonenberg Nahum, Colburn Nancy H
Gene Regulation Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA.
Mol Cell Biol. 2004 May;24(9):3894-906. doi: 10.1128/MCB.24.9.3894-3906.2004.
An alpha-helical MA-3 domain appears in several translation initiation factors, including human eukaryotic translation initiation factor 4G (eIF4G) and DAP-5/NAT1/p97, as well as in the tumor suppressor Pdcd4. The function of the MA-3 domain is, however, unknown. C-terminal eIF4G (eIG4Gc) contains an MA-3 domain that is located within the eIF4A-binding region, suggesting a role for eIF4A binding. Interestingly, C-terminal DAP-5/NAT1/p97 contains an MA-3 domain, but it does not bind to eIF4A. Mutation of amino acid residues conserved between Pdcd4 and eIF4Gc but not in DAP-5/NAT1/p97 to the amino acid residues found in the DAP-5/NAT1/p97 indicates that some of these amino acid residues within the MA-3 domain are critical for eIF4A-binding activity. Six Pdcd4 mutants (Pdcd4(E249K), Pdcd4(D253A), Pdcd4(D414K), Pdcd4(D418A), Pdcd4(E249K,D414K), and Pdcd4(D253A,D418A)) lost >90% eIF4A-binding activity. Mutation of the corresponding amino acid residues in the eIF4Gc also produced similar results, as seen for Pdcd4. These results demonstrate that the MA-3 domain is important for eIF4A binding and explain the ability of Pdcd4 or eIF4Gc but not DAP-5/NAT1/p97 to bind to eIF4A. Competition experiments indicate that Pdcd4 prevents ca. 60 to 70% of eIF4A binding to eIF4Gc at a Pdcd4/eIF4A ratio of 1:1, but mutants Pdcd4(D253A) and Pdcd4(D253A,D418A) do not. Translation of stem-loop structured mRNA is susceptible to inhibition by wild-type Pdcd4 but not by Pdcd4(D253A), Pdcd4(D418A), or Pdcd4(D235A,D418A). Together, these results indicate that not only binding to eIF4A but also prevention of eIF4A binding to the MA-3 domain of eIF4Gc contributes to the mechanism by which Pdcd4 inhibits translation.
α-螺旋MA-3结构域存在于多种翻译起始因子中,包括人类真核翻译起始因子4G(eIF4G)和DAP-5/NAT1/p97,以及肿瘤抑制因子Pdcd4。然而,MA-3结构域的功能尚不清楚。C端eIF4G(eIG4Gc)含有一个位于eIF4A结合区域内的MA-3结构域,提示其在eIF4A结合中发挥作用。有趣的是,C端DAP-5/NAT1/p97也含有一个MA-3结构域,但它不与eIF4A结合。将Pdcd4和eIF4Gc中保守但DAP-5/NAT1/p97中没有的氨基酸残基突变为DAP-5/NAT1/p97中的氨基酸残基,表明MA-3结构域内的一些氨基酸残基对eIF4A结合活性至关重要。六个Pdcd4突变体(Pdcd4(E249K)、Pdcd4(D253A)、Pdcd4(D414K)、Pdcd4(D418A))失去了>90%的eIF4A结合活性。eIF4Gc中相应氨基酸残基的突变也产生了与Pdcd4类似的结果。这些结果表明,MA-3结构域对eIF4A结合很重要,并解释了Pdcd4或eIF4Gc而非DAP-5/NAT1/p97与eIF4A结合的能力。竞争实验表明,在Pdcd4/eIF4A比例为1:1时,Pdcd4可阻止约60%至70%的eIF4A与eIF4Gc结合,但突变体Pdcd4(D253A)和Pdcd4(D253A,D418A)则不能。茎环结构mRNA的翻译易受野生型Pdcd4抑制,但不受Pdcd4(D253A)、Pdcd4(D418A)或Pdcd4(D235A,D418A)抑制。总之,这些结果表明不仅与eIF4A结合,而且阻止eIF4A与eIF4Gc的MA-3结构域结合都有助于Pdcd4抑制翻译的机制。