Suppr超能文献

酿酒酵母瓣状核酸内切酶1利用瓣平衡来维持三联体重复序列的稳定性。

Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability.

作者信息

Liu Yuan, Zhang Haihua, Veeraraghavan Janaki, Bambara Robert A, Freudenreich Catherine H

机构信息

Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642,USA.

出版信息

Mol Cell Biol. 2004 May;24(9):4049-64. doi: 10.1128/MCB.24.9.4049-4064.2004.

Abstract

Flap endonuclease 1 (FEN1) is a central component of Okazaki fragment maturation in eukaryotes. Genetic analysis of Saccharomyces cerevisiae FEN1 (RAD27) also reveals its important role in preventing trinucleotide repeat (TNR) expansion. In humans such expansion is associated with neurodegenerative diseases. In vitro, FEN1 can inhibit TNR expansion by employing its endonuclease activity to compete with DNA ligase I. Here we employed two yeast FEN1 nuclease mutants, rad27-G67S and rad27-G240D, to further define the mechanism by which FEN1 prevents TNR expansion. Using a yeast artificial chromosome system that can detect both TNR instability and fragility, we demonstrate that the G240D but not the G67S mutation increases both the expansion and fragility of a CTG tract in vivo. In vitro, the G240D nuclease is proficient in cleaving a fixed nonrepeat double flap; however, it exhibits severely impaired cleavage of both nonrepeat and CTG-containing equilibrating flaps. In contrast, wild-type FEN1 and the G67S mutant exhibit more efficient cleavage on an equilibrating flap than on a fixed CTG flap. The degree of TNR expansion and the amount of chromosome fragility observed in the mutant strains correlate with the severity of defective flap cleavage in vitro. We present a model to explain how flap equilibration and the unique tracking mechanism of FEN1 can collaborate to remove TNR flaps and prevent repeat expansion.

摘要

瓣内切核酸酶1(FEN1)是真核生物中冈崎片段成熟过程的核心组成部分。对酿酒酵母FEN1(RAD27)的遗传分析也揭示了其在防止三核苷酸重复序列(TNR)扩增方面的重要作用。在人类中,这种扩增与神经退行性疾病相关。在体外,FEN1可通过利用其内切核酸酶活性与DNA连接酶I竞争来抑制TNR扩增。在此,我们使用了两种酵母FEN1核酸酶突变体rad27 - G67S和rad27 - G240D,以进一步明确FEN1防止TNR扩增的机制。利用一种能够检测TNR不稳定性和脆性的酵母人工染色体系统,我们证明G240D突变而非G67S突变在体内增加了CTG序列的扩增和脆性。在体外,G240D核酸酶能够高效切割固定的非重复双瓣结构;然而,它对非重复和含CTG的平衡瓣的切割能力严重受损。相比之下,野生型FEN1和G67S突变体在平衡瓣上的切割效率高于固定的CTG瓣。在突变菌株中观察到的TNR扩增程度和染色体脆性与体外瓣切割缺陷的严重程度相关。我们提出了一个模型来解释瓣平衡和FEN1独特的追踪机制如何协同作用以去除TNR瓣并防止重复序列扩增。

相似文献

1
Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability.
Mol Cell Biol. 2004 May;24(9):4049-64. doi: 10.1128/MCB.24.9.4049-4064.2004.
2
Haploinsufficiency of yeast FEN1 causes instability of expanded CAG/CTG tracts in a length-dependent manner.
Gene. 2007 May 15;393(1-2):110-5. doi: 10.1016/j.gene.2007.01.025. Epub 2007 Feb 12.
5
Significance of the dissociation of Dna2 by flap endonuclease 1 to Okazaki fragment processing in Saccharomyces cerevisiae.
J Biol Chem. 2009 Mar 27;284(13):8283-91. doi: 10.1074/jbc.M809189200. Epub 2009 Jan 29.
6
Rate-determining Step of Flap Endonuclease 1 (FEN1) Reflects a Kinetic Bias against Long Flaps and Trinucleotide Repeat Sequences.
J Biol Chem. 2015 Aug 21;290(34):21154-21162. doi: 10.1074/jbc.M115.666438. Epub 2015 Jul 9.
7
Human Bloom protein stimulates flap endonuclease 1 activity by resolving DNA secondary structure.
J Biol Chem. 2005 Feb 18;280(7):5391-9. doi: 10.1074/jbc.M412359200. Epub 2004 Dec 4.
8
Triplet repeat expansion generated by DNA slippage is suppressed by human flap endonuclease 1.
J Biol Chem. 2004 May 28;279(22):23088-97. doi: 10.1074/jbc.M313170200. Epub 2004 Mar 22.
9
Analysis of human flap endonuclease 1 mutants reveals a mechanism to prevent triplet repeat expansion.
J Biol Chem. 2003 Apr 18;278(16):13728-39. doi: 10.1074/jbc.M212061200. Epub 2003 Jan 28.
10
Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility.
Mol Cell Biol. 2003 Nov;23(21):7849-60. doi: 10.1128/MCB.23.21.7849-7860.2003.

引用本文的文献

2
Elevated MSH2 MSH3 expression interferes with DNA metabolism in vivo.
Nucleic Acids Res. 2023 Dec 11;51(22):12185-12206. doi: 10.1093/nar/gkad934.
3
Suppressors of Break-Induced Replication in Human Cells.
Genes (Basel). 2023 Feb 3;14(2):398. doi: 10.3390/genes14020398.
4
Replication dependent and independent mechanisms of GAA repeat instability.
DNA Repair (Amst). 2022 Oct;118:103385. doi: 10.1016/j.dnarep.2022.103385. Epub 2022 Aug 3.
5
Error-prone, stress-induced 3' flap-based Okazaki fragment maturation supports cell survival.
Science. 2021 Dec 3;374(6572):1252-1258. doi: 10.1126/science.abj1013. Epub 2021 Dec 2.
6
Restarted replication forks are error-prone and cause CAG repeat expansions and contractions.
PLoS Genet. 2021 Oct 21;17(10):e1009863. doi: 10.1371/journal.pgen.1009863. eCollection 2021 Oct.
7
FAN1, a DNA Repair Nuclease, as a Modifier of Repeat Expansion Disorders.
J Huntingtons Dis. 2021;10(1):95-122. doi: 10.3233/JHD-200448.
8
Large-scale contractions of Friedreich's ataxia GAA repeats in yeast occur during DNA replication due to their triplex-forming ability.
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1628-1637. doi: 10.1073/pnas.1913416117. Epub 2020 Jan 7.
9
Cis- and Trans-Modifiers of Repeat Expansions: Blending Model Systems with Human Genetics.
Trends Genet. 2018 Jun;34(6):448-465. doi: 10.1016/j.tig.2018.02.005. Epub 2018 Mar 19.
10
Missed cleavage opportunities by FEN1 lead to Okazaki fragment maturation via the long-flap pathway.
Nucleic Acids Res. 2018 Apr 6;46(6):2956-2974. doi: 10.1093/nar/gky082.

本文引用的文献

1
The distribution of the numbers of mutants in bacterial populations.
J Genet. 1949 Dec;49(3):264-85. doi: 10.1007/BF02986080.
2
Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility.
Mol Cell Biol. 2003 Nov;23(21):7849-60. doi: 10.1128/MCB.23.21.7849-7860.2003.
4
Nuclease-deficient FEN-1 blocks Rad51/BRCA1-mediated repair and causes trinucleotide repeat instability.
Mol Cell Biol. 2003 Sep;23(17):6063-74. doi: 10.1128/MCB.23.17.6063-6074.2003.
5
Analysis of human flap endonuclease 1 mutants reveals a mechanism to prevent triplet repeat expansion.
J Biol Chem. 2003 Apr 18;278(16):13728-39. doi: 10.1074/jbc.M212061200. Epub 2003 Jan 28.
8
Okazaki fragment maturation in yeast. I. Distribution of functions between FEN1 AND DNA2.
J Biol Chem. 2003 Jan 17;278(3):1618-25. doi: 10.1074/jbc.M209801200. Epub 2002 Nov 6.
10
Biochemical characterization of the WRN-FEN-1 functional interaction.
Biochemistry. 2002 Oct 8;41(40):12204-16. doi: 10.1021/bi026031j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验