Suppr超能文献

GAA 重复不稳定的复制依赖和非依赖机制。

Replication dependent and independent mechanisms of GAA repeat instability.

机构信息

Department of Biology, Tufts University, Medford, MA 02155, USA.

Department of Biology, Tufts University, Medford, MA 02155, USA.

出版信息

DNA Repair (Amst). 2022 Oct;118:103385. doi: 10.1016/j.dnarep.2022.103385. Epub 2022 Aug 3.

Abstract

Trinucleotide repeat instability is a driver of human disease. Large expansions of (GAA) repeats in the first intron of the FXN gene are the cause Friedreich's ataxia (FRDA), a progressive degenerative disorder which cannot yet be prevented or treated. (GAA) repeat instability arises during both replication-dependent processes, such as cell division and intergenerational transmission, as well as in terminally differentiated somatic tissues. Here, we provide a brief historical overview on the discovery of (GAA) repeat expansions and their association to FRDA, followed by recent advances in the identification of triplex H-DNA formation and replication fork stalling. The main body of this review focuses on the last decade of progress in understanding the mechanism of (GAA) repeat instability during DNA replication and/or DNA repair. We propose that the discovery of additional mechanisms of (GAA) repeat instability can be achieved via both comparative approaches to other repeat expansion diseases and genome-wide association studies. Finally, we discuss the advances towards FRDA prevention or amelioration that specifically target (GAA) repeat expansions.

摘要

三核苷酸重复不稳定是人类疾病的驱动因素。 FXN 基因第一内含子中 (GAA) 重复的大量扩增是导致弗里德里希共济失调症 (FRDA) 的原因,FRDA 是一种进行性退行性疾病,目前尚无法预防或治疗。 (GAA) 重复的不稳定性既发生在复制依赖性过程中,如细胞分裂和代际传递,也发生在终末分化的体组织中。在这里,我们简要回顾了 (GAA) 重复扩增的发现及其与 FRDA 的关联,以及最近在三链 H-DNA 形成和复制叉停滞鉴定方面的进展。本综述的主要内容集中在过去十年中对 DNA 复制和/或 DNA 修复过程中 (GAA) 重复不稳定性机制的理解。我们提出,通过对其他重复扩展疾病的比较研究和全基因组关联研究,可以发现更多的 (GAA) 重复不稳定性机制。最后,我们讨论了针对 (GAA) 重复扩增的 FRDA 预防或改善的进展。

相似文献

1
Replication dependent and independent mechanisms of GAA repeat instability.
DNA Repair (Amst). 2022 Oct;118:103385. doi: 10.1016/j.dnarep.2022.103385. Epub 2022 Aug 3.
3
Stalled DNA Replication Forks at the Endogenous GAA Repeats Drive Repeat Expansion in Friedreich's Ataxia Cells.
Cell Rep. 2016 Aug 2;16(5):1218-1227. doi: 10.1016/j.celrep.2016.06.075. Epub 2016 Jul 14.
4
A novel GAA-repeat-expansion-based mouse model of Friedreich's ataxia.
Dis Model Mech. 2015 Mar;8(3):225-35. doi: 10.1242/dmm.018952. Epub 2015 Feb 13.
5
Effects of Friedreich's ataxia GAA repeats on DNA replication in mammalian cells.
Nucleic Acids Res. 2012 May;40(9):3964-74. doi: 10.1093/nar/gks021. Epub 2012 Jan 19.
6
Somatic instability of the expanded GAA repeats in Friedreich's ataxia.
PLoS One. 2017 Dec 19;12(12):e0189990. doi: 10.1371/journal.pone.0189990. eCollection 2017.
7
Large-scale contractions of Friedreich's ataxia GAA repeats in yeast occur during DNA replication due to their triplex-forming ability.
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1628-1637. doi: 10.1073/pnas.1913416117. Epub 2020 Jan 7.
8
Replication stalling at Friedreich's ataxia (GAA)n repeats in vivo.
Mol Cell Biol. 2004 Mar;24(6):2286-95. doi: 10.1128/MCB.24.6.2286-2295.2004.
9
Replication-independent instability of Friedreich's ataxia GAA repeats during chronological aging.
Proc Natl Acad Sci U S A. 2021 Feb 2;118(5). doi: 10.1073/pnas.2013080118.
10
Alleviating GAA Repeat Induced Transcriptional Silencing of the Friedreich's Ataxia Gene During Somatic Cell Reprogramming.
Stem Cells Dev. 2016 Dec 1;25(23):1788-1800. doi: 10.1089/scd.2016.0147. Epub 2016 Oct 17.

引用本文的文献

3
Design and validation of cell-based potency assays for frataxin supplementation treatments.
Mol Ther Methods Clin Dev. 2024 Sep 27;32(4):101347. doi: 10.1016/j.omtm.2024.101347. eCollection 2024 Dec 12.
4
Triplex H-DNA structure: the long and winding road from the discovery to its role in human disease.
NAR Mol Med. 2024 Dec 5;1(4):ugae024. doi: 10.1093/narmme/ugae024. eCollection 2024 Oct.
5
Stabilization of expandable DNA repeats by the replication factor Mcm10 promotes cell viability.
Nat Commun. 2024 Dec 3;15(1):10532. doi: 10.1038/s41467-024-54977-6.
7
DRED: A Comprehensive Database of Genes Related to Repeat Expansion Diseases.
Genomics Proteomics Bioinformatics. 2024 Dec 3;22(5). doi: 10.1093/gpbjnl/qzae068.
8
Somatic and intergenerational G4C2 hexanucleotide repeat instability in a human C9orf72 knock-in mouse model.
Nucleic Acids Res. 2024 Jun 10;52(10):5732-5755. doi: 10.1093/nar/gkae250.
9
Pathogenic CANVAS (AAGGG)n repeats stall DNA replication due to the formation of alternative DNA structures.
Nucleic Acids Res. 2024 May 8;52(8):4361-4374. doi: 10.1093/nar/gkae124.

本文引用的文献

1
Drug delivery to the central nervous system.
Nat Rev Mater. 2022 Apr;7(4):314-331. doi: 10.1038/s41578-021-00394-w. Epub 2021 Dec 3.
3
The mechanism of replication stalling and recovery within repetitive DNA.
Nat Commun. 2022 Jul 19;13(1):3953. doi: 10.1038/s41467-022-31657-x.
4
Polymerases and DNA Repair in Neurons: Implications in Neuronal Survival and Neurodegenerative Diseases.
Front Cell Neurosci. 2022 Jun 30;16:852002. doi: 10.3389/fncel.2022.852002. eCollection 2022.
5
The Role of DNA Damage in Neural Plasticity in Physiology and Neurodegeneration.
Front Cell Neurosci. 2022 Jun 23;16:836885. doi: 10.3389/fncel.2022.836885. eCollection 2022.
6
Advantages and Limitations of Gene Therapy and Gene Editing for Friedreich's Ataxia.
Front Genome Ed. 2022 May 17;4:903139. doi: 10.3389/fgeed.2022.903139. eCollection 2022.
7
Triple-helix potential of the mouse genome.
Proc Natl Acad Sci U S A. 2022 May 10;119(19):e2203967119. doi: 10.1073/pnas.2203967119. Epub 2022 May 3.
10
KAS-seq: genome-wide sequencing of single-stranded DNA by N-kethoxal-assisted labeling.
Nat Protoc. 2022 Feb;17(2):402-420. doi: 10.1038/s41596-021-00647-6. Epub 2022 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验