Suppr超能文献

通过脂肪酸分析、荧光原位杂交和分离技术对啤酒厂生物膜的微生物组成进行研究。

Microbial composition of biofilms in a brewery investigated by fatty acid analysis, fluorescence in situ hybridisation and isolation techniques.

作者信息

Timke Markus, Wolking Dorothee, Wang-Lieu Ngoc Quynh, Altendorf Karlheinz, Lipski André

机构信息

Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany.

出版信息

Appl Microbiol Biotechnol. 2004 Nov;66(1):100-7. doi: 10.1007/s00253-004-1601-y. Epub 2004 Apr 14.

Abstract

Biofilms associated with brewery plants can harbour spoiling microorganisms that potentially damage the final product. Most beer-spoiling microorganisms are thought to depend on numerous interactions with the accompanying microbiota. However, there is no information on the microbial community structure of biofilms from bottling plants. The conveyors that transport the bottles to and from the plant are known as potential sources of microbial contamination of beer. Consequently, the material buildup from two conveyors was analysed using a cultivation/isolation approach, and the culture-independent techniques of whole cell fatty acid analysis and fluorescence in situ hybridisation (FISH). Heterogeneous communities were present at both conveyors. Although characteristic fatty acids for Eukarya were present, FISH-signals for Eukarya were extremely low. The Proteobacteria, in particular the Gammaproteobacteria, were abundant at both sample sites. Bacterial isolates were obtained for every dominating group detected by FISH: the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria, the Xanthomonadaceae, the Actinobacteria, the Bacteroidetes and the Firmicutes.

摘要

与啤酒厂相关的生物膜可能含有会对最终产品造成潜在损害的腐败微生物。大多数导致啤酒变质的微生物被认为依赖于与伴随微生物群的大量相互作用。然而,关于装瓶厂生物膜的微生物群落结构尚无相关信息。用于在工厂内外运输瓶子的传送带是啤酒微生物污染的潜在来源。因此,采用培养/分离方法以及全细胞脂肪酸分析和荧光原位杂交(FISH)等不依赖培养的技术,对两条传送带的物质堆积情况进行了分析。两条传送带上均存在异质群落。虽然存在真核生物的特征性脂肪酸,但真核生物的FISH信号极低。变形菌门,尤其是γ-变形菌纲,在两个采样点都很丰富。通过FISH检测到的每个优势菌群都获得了细菌分离株:α-变形菌纲、β-变形菌纲和γ-变形菌纲、黄单胞菌科、放线菌门、拟杆菌门和厚壁菌门。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验