Suppr超能文献

圆柱几何中不可压缩瑞利 - 迈斯科夫不稳定性下涡旋片的解析与数值研究。

Analytical and numerical study on a vortex sheet in incompressible Richtmyer-Meshkov instability in cylindrical geometry.

作者信息

Matsuoka Chihiro, Nishihara Katsunobu

机构信息

Department of Physics, Ehime University, 2-5, Bunkyocho, Matsuyama, Ehime 790-8577, Japan.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Dec;74(6 Pt 2):066303. doi: 10.1103/PhysRevE.74.066303. Epub 2006 Dec 5.

Abstract

Motion of a fluid interface in the Richtmyer-Meshkov instability in cylindrical geometry is examined analytically and numerically. Nonlinear stability analysis is performed in order to clarify the dependence of growth rates of a bubble and spike on the Atwood number and mode number n involved in the initial perturbations. We discuss differences of weakly and fully nonlinear evolution in cylindrical geometry from that in planar geometry. It is shown that the analytical growth rates coincide well with the numerical ones up to the neighborhood of the break down of numerical computations. Long-time behavior of the fluid interface as a vortex sheet is numerically investigated by using the vortex method and the roll up of the vortex sheet is discussed for different Atwood numbers. The temporal evolution of the curvature of a bubble and spike for several mode numbers is investigated and presented that the curvature of spikes is always larger than that of bubbles. The circulation and the strength of the vortex sheet at the fully nonlinear stage are discussed, and it is shown that their behavior is different for the cases that the inner fluid is heavier than the outer one and vice versa.

摘要

对圆柱几何中 Richtmyer-Meshkov 不稳定性下流体界面的运动进行了分析和数值研究。进行了非线性稳定性分析,以阐明气泡和尖峰的增长率对初始扰动中涉及的阿特伍德数和模式数 n 的依赖性。我们讨论了圆柱几何中弱非线性和完全非线性演化与平面几何中的差异。结果表明,在数值计算崩溃的邻域之前,解析增长率与数值增长率吻合良好。利用涡旋方法对作为涡旋片的流体界面的长时间行为进行了数值研究,并讨论了不同阿特伍德数下涡旋片的卷起情况。研究了几种模式数下气泡和尖峰曲率的时间演化,结果表明尖峰的曲率总是大于气泡的曲率。讨论了完全非线性阶段涡旋片的环量和强度,结果表明,对于内流体比外流体重和反之亦然的情况,它们的行为是不同的。

相似文献

3
4
Nonlinear evolution of an interface in the Richtmyer-Meshkov instability.瑞特迈尔-梅什科夫不稳定性中界面的非线性演化
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 2):036301. doi: 10.1103/PhysRevE.67.036301. Epub 2003 Mar 11.
5
Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities.用于瑞利-泰勒和里希特迈尔-梅什科夫不稳定性的涡旋模型与模拟
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt 2):036703. doi: 10.1103/PhysRevE.69.036703. Epub 2004 Mar 30.
9
Numerical simulation of the Richtmyer-Meshkov instability in initially nonuniform flows and mixing with reshock.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec;86(6 Pt 2):066319. doi: 10.1103/PhysRevE.86.066319. Epub 2012 Dec 26.
10
Density dependence of a Zufiria-type model for Rayleigh-Taylor bubble fronts.瑞利-泰勒气泡前沿的祖菲里亚型模型的密度依赖性
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Oct;70(4 Pt 2):045301. doi: 10.1103/PhysRevE.70.045301. Epub 2004 Oct 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验