Suppr超能文献

具有多个rrn操纵子的基因组中16S rRNA序列的差异与冗余

Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons.

作者信息

Acinas Silvia G, Marcelino Luisa A, Klepac-Ceraj Vanja, Polz Martin F

机构信息

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

出版信息

J Bacteriol. 2004 May;186(9):2629-35. doi: 10.1128/JB.186.9.2629-2635.2004.

Abstract

The level of sequence heterogeneity among rrn operons within genomes determines the accuracy of diversity estimation by 16S rRNA-based methods. Furthermore, the occurrence of widespread horizontal gene transfer (HGT) between distantly related rrn operons casts doubt on reconstructions of phylogenetic relationships. For this study, patterns of distribution of rrn copy numbers, interoperonic divergence, and redundancy of 16S rRNA sequences were evaluated. Bacterial genomes display up to 15 operons and operon numbers up to 7 are commonly found, but approximately 40% of the organisms analyzed have either one or two operons. Among the Archaea, a single operon appears to dominate and the highest number of operons is five. About 40% of sequences among 380 operons in 76 bacterial genomes with multiple operons were identical to at least one other 16S rRNA sequence in the same genome, and in 38% of the genomes all 16S rRNAs were invariant. For Archaea, the number of identical operons was only 25%, but only five genomes with 21 operons are currently available. These considerations suggest an upper bound of roughly threefold overestimation of bacterial diversity resulting from cloning and sequencing of 16S rRNA genes from the environment; however, the inclusion of genomes with a single rrn operon may lower this correction factor to approximately 2.5. Divergence among operons appears to be small overall for both Bacteria and Archaea, with the vast majority of 16S rRNA sequences showing <1% nucleotide differences. Only five genomes with operons with a higher level of nucleotide divergence were detected, and Thermoanaerobacter tengcongensis exhibited the highest level of divergence (11.6%) noted to date. Overall, four of the five extreme cases of operon differences occurred among thermophilic bacteria, suggesting a much higher incidence of HGT in these bacteria than in other groups.

摘要

基因组内rrn操纵子之间的序列异质性水平决定了基于16S rRNA方法进行多样性估计的准确性。此外,远缘rrn操纵子之间广泛发生的水平基因转移(HGT)对系统发育关系的重建提出了质疑。在本研究中,评估了rrn拷贝数的分布模式、操纵子间差异以及16S rRNA序列的冗余性。细菌基因组最多可显示15个操纵子,通常可发现操纵子数量多达7个,但分析的生物体中约40%只有一个或两个操纵子。在古菌中,单个操纵子似乎占主导地位,操纵子的最高数量为5个。在76个具有多个操纵子的细菌基因组的380个操纵子中,约40%的序列与同一基因组中的至少一个其他16S rRNA序列相同,并且在38%的基因组中所有16S rRNA都是不变的。对于古菌,相同操纵子的数量仅为25%,但目前仅有5个具有21个操纵子的基因组。这些考虑表明,从环境中克隆和测序16S rRNA基因导致细菌多样性估计大约高估了三倍;然而,纳入具有单个rrn操纵子的基因组可能会将这个校正因子降低到约2.5。对于细菌和古菌来说,操纵子之间的差异总体上似乎很小,绝大多数16S rRNA序列显示出<1%的核苷酸差异。仅检测到5个具有较高核苷酸差异水平操纵子的基因组,嗜热栖热菌表现出迄今为止所记录的最高差异水平(11.6%)。总体而言,操纵子差异的5个极端案例中有4个发生在嗜热细菌中,这表明这些细菌中HGT的发生率比其他群体高得多。

相似文献

1
Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons.
J Bacteriol. 2004 May;186(9):2629-35. doi: 10.1128/JB.186.9.2629-2635.2004.
2
Reprint of New opportunities for improved ribotyping of C. difficile clinical isolates by exploring their genomes.
J Microbiol Methods. 2013 Dec;95(3):425-40. doi: 10.1016/j.mimet.2013.09.009. Epub 2013 Sep 16.
3
Assembly of a complete genome sequence for Gemmata obscuriglobus reveals a novel prokaryotic rRNA operon gene architecture.
Antonie Van Leeuwenhoek. 2018 Nov;111(11):2095-2105. doi: 10.1007/s10482-018-1102-0. Epub 2018 May 21.
6
Comparative and functional analysis of the rRNA-operons and their tRNA gene complement in different lactic acid bacteria.
Syst Appl Microbiol. 2006 Jul;29(5):358-67. doi: 10.1016/j.syapm.2005.11.010. Epub 2005 Dec 9.
7
Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes.
FEMS Microbiol Lett. 2003 Nov 7;228(1):45-9. doi: 10.1016/S0378-1097(03)00717-1.
9
10
Structure, expression and products of the ribosomal RNA operons of Rhodopseudomonas palustris No. 7.
Mol Genet Genomics. 2001 Jul;265(5):778-90. doi: 10.1007/s004380100466.

引用本文的文献

1
Why Are Long-Read Sequencing Methods Revolutionizing Microbiome Analysis?
Microorganisms. 2025 Aug 9;13(8):1861. doi: 10.3390/microorganisms13081861.
2
Predicting coarse-grained representations of biogeochemical cycles from metabarcoding data.
Bioinformatics. 2025 Jul 1;41(Supplement_1):i49-i57. doi: 10.1093/bioinformatics/btaf230.
3
A systematic review of the microbiome of Koch, 1844 ticks using next-generation sequencing of the gene.
Vet World. 2025 May;18(5):1090-1100. doi: 10.14202/vetworld.2025.1090-1100. Epub 2025 May 8.
4
Absolute abundance calculation enhances the significance of microbiome data in antibiotic treatment studies.
Front Microbiol. 2025 Mar 24;16:1481197. doi: 10.3389/fmicb.2025.1481197. eCollection 2025.
5
Using short-read 16S rRNA sequencing of multiple variable regions to generate high-quality results to a species level.
Front Bioinform. 2025 Mar 17;5:1484113. doi: 10.3389/fbinf.2025.1484113. eCollection 2025.
6
Impacts of ribosomal RNA sequence variation on gene expression and phenotype.
Philos Trans R Soc Lond B Biol Sci. 2025 Mar 6;380(1921):20230379. doi: 10.1098/rstb.2023.0379.
8
Therapeutic Modulation of the Microbiome in Oncology: Current Trends and Future Directions.
Curr Pharm Biotechnol. 2025;26(5):680-699. doi: 10.2174/0113892010353600241109132441.
10
Genomic characterization of the bacterial phylum Effluviviacota, a cosmopolitan member of the global seep microbiome.
mBio. 2024 Aug 14;15(8):e0099224. doi: 10.1128/mbio.00992-24. Epub 2024 Jul 9.

本文引用的文献

1
High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria.
Environ Microbiol. 2004 Jul;6(7):686-98. doi: 10.1111/j.1462-2920.2004.00600.x.
2
Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation.
Nature. 2003 Aug 28;424(6952):1042-7. doi: 10.1038/nature01947. Epub 2003 Aug 13.
3
Phylogenetics and the cohesion of bacterial genomes.
Science. 2003 Aug 8;301(5634):829-32. doi: 10.1126/science.1086568.
4
Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis.
Nature. 2003 May 1;423(6935):87-91. doi: 10.1038/nature01582.
5
Understanding bias in microbial community analysis techniques due to rrn operon copy number heterogeneity.
Biotechniques. 2003 Apr;34(4):790-4, 796, 798 passim. doi: 10.2144/03344rr01.
6
Cultivation of the ubiquitous SAR11 marine bacterioplankton clade.
Nature. 2002 Aug 8;418(6898):630-3. doi: 10.1038/nature00917.
7
Suppressive subtractive hybridization detects extensive genomic diversity in Thermotoga maritima.
J Bacteriol. 2002 Aug;184(16):4475-88. doi: 10.1128/JB.184.16.4475-4488.2002.
8
Estimating prokaryotic diversity and its limits.
Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10494-9. doi: 10.1073/pnas.142680199. Epub 2002 Jul 3.
9
Prokaryotic diversity--magnitude, dynamics, and controlling factors.
Science. 2002 May 10;296(5570):1064-6. doi: 10.1126/science.1071698.
10
A complete sequence of the T. tengcongensis genome.
Genome Res. 2002 May;12(5):689-700. doi: 10.1101/gr.219302.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验