Wagner Stefanie, Weber Michael, Paul Lena-Sophie, Grümpel-Schlüter Angelika, Kluess Jeannette, Neuhaus Klaus, Fuchs Thilo M
Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany.
Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Braunschweig, Germany.
Front Microbiol. 2025 Mar 24;16:1481197. doi: 10.3389/fmicb.2025.1481197. eCollection 2025.
The intestinal microbiota contributes to the colonization resistance of the gut towards bacterial pathogens. Antibiotic treatment often negatively affects the microbiome composition, rendering the host more susceptible for infections. However, a correct interpretation of such a perturbation requires quantitative microbiome profiling to reflect accurately the direction and magnitude of compositional changes within a microbiota. Standard 16S rRNA gene amplicon sequencing of microbiota samples offers compositional data in relative, but not absolute abundancies, and the presence of multiple copies of 16S rRNA genes in bacterial genomes introduces bias into compositional data. We explored whether improved sequencing data analysis influences the significance of the effect exerted by antibiotics on the faecal microbiota of young pigs using two veterinary antibiotics. Calculation of absolute abundances, either by flow cytometry-based bacterial cell counts or by spike-in of synthetic 16S rRNA genes, was employed and 16S rRNA gene copy numbers (GCN) were corrected.
Cell number determination exhibited large interindividual variability in two pig studies, using either tylosin or tulathromycin. Following tylosin application, flow cytometry-based cell counting revealed decreased absolute abundances of five families and ten genera. These results were not detectable by standard 16S analysis based on relative abundances. Here, GCN correction additionally uncovered significant decreases of and . In another experimental setting with tulathromycin treatment, bacterial abundance quantification by flow cytometry and by a spike-in method yielded similar results only on the phylum level. Even though the spike-in method identified the decrease of four genera, analysis by fluorescence-activated cell sorting (FACS) uncovered eight significantly reduced genera, such as and upon antibiotic treatment. In contrast, analysis of relative abundances only showed a decrease of and RC9 gut group and, thus, a much less detailed antibiotic effect.
Flow cytometry is a laborious method, but identified a higher number of significant microbiome changes in comparison to common compositional data analysis and even revealed to be superior to a spike-in method. Calculation of absolute abundances and GCN correction are valuable methods that should be standards in microbiome analyses in veterinary as well as human medicine.
肠道微生物群有助于肠道对细菌病原体的定植抗性。抗生素治疗通常会对微生物组组成产生负面影响,使宿主更容易受到感染。然而,要正确解释这种扰动,需要进行定量微生物组分析,以准确反映微生物群内组成变化的方向和程度。微生物群样本的标准16S rRNA基因扩增子测序提供的是相对丰度而非绝对丰度的组成数据,并且细菌基因组中16S rRNA基因的多个拷贝的存在会给组成数据带来偏差。我们使用两种兽用抗生素,探讨了改进的测序数据分析是否会影响抗生素对幼猪粪便微生物群所产生效应的显著性。采用基于流式细胞术的细菌细胞计数或合成16S rRNA基因的掺入法来计算绝对丰度,并对16S rRNA基因拷贝数(GCN)进行校正。
在两项使用泰乐菌素或泰拉霉素的仔猪研究中,细胞数量测定显示个体间存在很大差异。应用泰乐菌素后,基于流式细胞术的细胞计数显示五个科和十个属的绝对丰度降低。基于相对丰度的标准16S分析无法检测到这些结果。在此,GCN校正还发现[具体属名1]和[具体属名2]显著减少。在另一项泰拉霉素治疗的实验设置中,通过流式细胞术和掺入法进行细菌丰度定量仅在门水平上产生了相似的结果。尽管掺入法确定了四个属的减少,但通过荧光激活细胞分选(FACS)分析发现有八个属显著减少,如抗生素治疗后的[具体属名3]和[具体属名4]。相比之下,相对丰度分析仅显示RC9肠道菌群减少了[具体属名5]和[具体属名6],因此对抗生素效应的描述要少得多。
流式细胞术是一种费力的方法,但与常见的组成数据分析相比,它能识别出更多显著的微生物组变化,甚至被证明优于掺入法。计算绝对丰度和GCN校正是有价值的方法,应成为兽医学和人类医学微生物组分析的标准方法。